
Fast Fourier Transforms (FFT)
Samar Aseeri, PhD

Computational Scientist
King Abdullah University of Science and Technology - Building 1 -Office: 0128

samar.aseeri@kaust.edu.sa

www.fft.report

“Fourier” the Scientist
Mathematical Physicist.

Father of Mathematical Transforms

His major work, “The Analytic
Theory of Heat”, changed the way
scientists think about functions and
successfully stated the equations
governing the heat transfer in solids.

In 1807, he invented a technique to
solve this equation: Fourier
Transform.

He applied this technique to explain
many heat transfer problems.

Prior to Fourier’s work, no solution to
the heat equation was known in the
general case.

Fourier series is a way to represent any
periodic function as an infinite sum of
sines and cosines.

Power Series
We use power series to approximate complicated functions.

A power series is a series whose terms are functions of x.

This series usually arises as the Taylor series of some known function.

These are called power series, because the terms are multiples of power x. Examples;

Other power series to consider:

Fourier series whose terms
involve sines and cosines.
Also, Legendre, Bessel, etc…

Legendre and Bessel in
which the terms may be
polynomials of the
functions.

Fourier Series
Problems involving vibrations or oscillations occur frequently in
physics and engineering.

Examples like vibrating tuning fork, a pendulum and water waves.

Other examples as the heat conduction, electric and magnetic fields
and light does not appear to have anything oscillatory but turns
out to involve the sines and cosines which are used in describing
both simple harmonic motion and wave motion.

In many problems, series called Fourier series, whose terms are
sines and cosines, are more useful than power series.

Fourier Series
A Periodic function is a function that
repeats its values in regular intervals or
periods.

Fourier series for a periodic function f(x) of
period 2Π

Coefficients

Fourier Series
Example: Expand in a Fourier series the
sketched function f(x)

Note f(x) is a function of period 2Π. In this
problem, instead of a sketch, you might have
been given

Fourier Series
To find an we use;

Thus a0 =1, and all other an =0.

To find bn we use

Putting these values for the coefficients into Fourier Series
formula, we get

Fourier Series
Dirichlet Conditions:

Complex Form of Fourier Series:

Integral Transforms

ls a function of p. Starting with a function of t, we have multiplied it by a function of p
and t. The function F(p) is called an integral transform of f(t).

Integral transforms are used in a variety of applications, for example, in solving ODE
or PDE.

There are many different kinds of integral transforms with different names,
depending on what function of p and t we multiply by and what the range of
integration is (the above example is called a Mellin transform).

Laplace and Fourier transforms are the most widely used of all integral transforms.

Laplace is considered a generalised Fourier transform.

Fourier Transforms
This came as an answer to the question: is it possible to represent a function
which is not periodic by something analogous to Fourier series?

If you recall that an integral is a sum, it may not surprise you to learn that the
Fourier series that is a sum of terms is replaced by a Fourier integral to cover
non periodic cases.

If we go back to the complex Fourier series formulas:

and use substitutions to consider the case of a continuous range of frequencies. We
get the corresponding following formulas for the Fourier transforms;

Fourier Transforms
To represent odd functions, we use the
Fourier sine transforms;

To represent even functions, we use the
Fourier cosine transforms;

Fourier Transforms
Separation of variable (also known as
the Fourier method) is a technique for
solving PDE equations, in which algebra
allows one to rewrite an equation so
that each two variables occurs on a
different side of the equation.

If ut = uxx ,suppose U= X(x) T(t)

Solving each side separately with using
linearity gives the solution;

U =

Fourier Transforms
Example: (Heat Equation)

Using the product U= X T and λ2as a separation constant leads to

Solution:

Substituting t=0 gives the half-range expression of Fourier series. Therefore,

Fourier Transforms
In such problems we use separation of variables method (Fourier method) to solve the problem.

When the # of derivatives is more than the given boundary conditions it is not possible to use
the separation of variable methods. In this case Fourier and Laplace transforms are the way to
go.

When the domain is from -∞ -> ∞ we think of using the Fourier transform to solve the problem.

If we have the following problem;

and then define the complex Fourier as

then the substitution in the problem equation will lead to the following solution;

Fast Fourier Transform
(FFT)

In many application context the Fourier transform is
approximated with a Discrete Fourier Transform (DFT).

Back to the general solution of the first heat equation
solved with Fourier method;

The Fast Fourier Transform allows one to find good
approximations of the coefficients αn, βn when the solution
is found at a finite number of equally spaced grid points.

U =

The Fast Fourier Transform
(FFT) Algorithm

Numerically efficient method to calculate DFT.

It was originally developed by Gauss in 1805 but not recognised
until more modern times.

In 1965 Cooley+ Tukey published a paper on the Fast Fourier
Transform and the efficient way to do it and of course the time
was right because the use of computer was growing and there
was a need for faster and faster data analysis.

N 1000 106 109

N2 106 1012 1018

N log2N 104 20*106 30*109

The Fast Fourier Transform
(FFT) Algorithm

Why do we need FFT if we have DFT? The
reason is that DFT is computationally
expensive.

The Cooley-Tukey FFT reduced the DFT
computations from O(N2) to O(N log2N).

The difference shows when N gets large (see
table)

Sequential Algorithm
We will begin reminding our self with the DFT

A more efficient way of calculating the DFT leads us to FFT.

What is the Trick/Idea behind the Fast Fourier Transform?

The idea is to divide the sequence X(n) into odd and even sequences.

X(2r) even sequence X(2r+1) odd sequence

If we put: , we get

entries of Fourier matrix

for each k : N complex multiplications + N
complex adds = N*N

Sequential Algorithm
X(k) = DFT even N/2 samples + DFT odd N/2 samples

Total operations: multiplications!

Since; , therefore;

Example: N=8

Total Multiplications:

(N/2) 2 . 2 + N ≈ N2/2 + N

To Compute back:
x[0] =E[0]+ O[0]
x[1] =E[0] - O[0]

Sequential Algorithm
We started with N2 so if did the full FFT we ruffle cut things
by a factor of 2 using this approach.

This splitting saved us some computation so why not continuing
this process.

The method consists of organising the problem so that the
number of data points N being used can be easily factored,
particularly into powers of 2.

Keep splitting: each N/2 p -> 2 N/4 p

How many times? N/2, N/4, …., N/2p-1, N/2p =1

Sequential Algorithm
What is the total # of multiplications in this FFT?
If M(N) = N2 -> DFT
Then M(N) = 2 M(N/2) + N -> FFT
Substituting M(N) over and over again to observe a closed form:

> M(N) = 2(2M(N/4) + N/2) + N
= 4M(N/4) +2N

> M(N)= 4(M(N/8) + N/4) + 2N
= 8 M(N/4) + N + 2N

=8M(N/8) + 3N
:

> M(N) = 2k M(N/2k) + k N
For trivial DFT M(1)= 0 then, if N/2k = 1 => N = 2k => log2N = k

> M(N) = N log2N

Sequential Algorithm
procedure fft(x, X, n, w)
If n=1 then

X[0] = x[0]
else

for k=0 to (n/2)-1
p[k] = x[2k]
s[k] = x[2k+1]

end
fft(p, q, n/2 , w2)
fft(s, t, n/2 , w2)
for k = 0 to n-1

X[k] = q[k mod (n/2)] + w2t[k mod (n/2)]
end

end

Sequential Algorithm
n=8

Algoritm Mapping

A Full FFT will be done in stages.

Number of stages depends on the
number of points N which a
power of 2

For the case N=8= 23 the number
of stages is 3.

This mapping of the FFT
algorithm is called the Butterfly
diagram.Stage= 1 2 3 4 5 6

Iterative Sequential
Algorithm

We take the elements in pairs,
compute the DFT of each pair,
using one butterfly operation,
and replace the pair with its DFT

We take these n/2 DFT’s in
pairs and compute the DFT of
the four vector elements
:

We take 2 (n/2)-element DFT’s
and combine them using n/2
butterfly operations into the
final n-element DFT

n=8

Iterative Sequential
Algorithm

1. procedure ITERATIVE_FFT(x, X, n)
2. begin
3. r := log n;
4. for i:= 0 to n-1 do R[i] := x[i];
5. for m:= 0 to r-1 do
6. begin
7. for i:= 0 to n-1 do S[i] := R[i];
8. for i:= 0 to n-1 do
9. begin

/* Let (b0, b1, b2, … br-1) be the binary representation of i */
10. j := (b0 … bm-10bm+1 .. br-1);
11. k := (b0 … bm-11bm+1 .. br-1);
12. R[i] := S[j] + S[k] x w(bmbm-1..b00..0) ;
13. endfor;
14. endfor;
15. for i:= 0 to n-1 do X[i] := R[i];
16. end ITERATIVE_FFT

Other FFT Algorithms
Any algorithm that reduces operations for the DFT is called FFT. Therefore, the
FFT is not just one algorithm and the simplest one was discovered by Cooley+
Tukey and it is the serial algorithm where we divide the even and odd terms to
reduce the number of operations.

Another class of FFTs subdivides the initial data set of length N not all the way
down to the trivial transform of length 1

There are also FFT algorithms for data sets of length N not a power of two.

MPI Parallel FFT algorithm where all butterflies in a stage can be performed in
parallel and then at the end of the stage, the results can be gathered. (not very
efficient and creates a lot of overheads)

2D and 3D FFT algorithms

Parallel FFT Algorithms
There are two approaches for parallelizing:

1. Binary Exchange Algorithms: Where tasks
exchange data at each stage of the serial
algorithm.

2. Transpose algorithms: Where data are
transposed using all-to-all personalised collective
communication if the array is partitioned by
columns each raw of data array is now stored in
single task.

Binary Exchange FFT
Data exchange takes place between all pairs
of processors that differ by one bit.

One element per processor is Easy.

For Multiple elements per processor we
Assign contiguous blocks to processors and
we get same algorithm, just exchange blocks.

Binary Exchange FFT

Binary Exchange FFT
d – number of bits for representing processes; r – number of bits
representing the elements

The d most significant bits of element i indicate the process that
the element belongs to.

Only the first d of the r iterations require communication

In a given iteration, m, a process i communicates with only one
other process obtained by flipping the (m+1)th most significant
bit of i

Total execution time - ? (n/P) long n + log P + (n/P) log P

Binary Exchange FFT
Big bandwidth requirement: Communication
increases as n increases.

Duplicated computations: Powers of ω
cannot be pre-calculated and it is used at
different times on different processors

The Transpose FFT
The data is arranged in a sqrt(n) x sqrt(n)
two-dimensional square array

Rather than do an exchange transpose the
matrix halfway through algorithm

The Transpose FFT

Notice:

First two
iterations are
columnwise

Last two
iterations are
rowwise

The Transpose FFT
p processes arranged along columns. Each
process owns sqrt(n/p) columns.

Each process does sqrt(n/p) FFTs of size
sqrt(n) each.

Parallel runtime – 2(sqrt(n)/p)*
sqrt(n)*log(sqrt(n)) + (p-1)+ n/p(b)

Which Algorithm is
Better?

Binary exchange – small latency, large bandwidth

2D transpose – large latency, small bandwidth

Transpose algorithm is easy to generalize to
higher dimensions

It depends on the architecture and amount of
data

Fourier Techniques &
Applications

One of the major computational methods that uses FFTs is the so-called
Spectral Methods.

Spectral Methods are just one of the many ways to represent a function
on a computer.

Fourier series are particularly suited for the discretization of periodic
domain.

An efficient way to compute this is via fast Fourier transform (FFT) for
the following reasons:

the FFT major relation;

the speed

the Fourier transform of the
nth derivative.

O(N2) —> O(N log N)

Fourier Techniques &
Applications

The idea behind Fourier is the following Fourier transform represents
functions in frequency space versus time domain or spatial domain.

Unlike FDM where we chop off the domain into a certain number of points
and to evaluate the solution we depend on neighbors so everything is local if
you want to calculate a second derivative for instance each point cares
only about its neighbors.

For Spectral methods everything is represented in terms of Sines & Cosines
which are global modes and lives on the whole domain and with this you
get big accuracy gains.

Spectral methods with Fourier bases limits you to a very small boundary
condition set.

Fourier Techniques &
Applications

Spectral methods with Chebyshev basis allows a little bit more flexibility with how would
you do with boundaries.

Accuracy & Speed makes one work hard to modify things to can still make use of these
spectral routines.

For non-periodic B.C. one of method to use is the Periodic Extensions for the function.

Fourier said: I can take any function and represent it in terms of Sines and Cosines.

Gibbs phenomenon is the behavior of Fourier series for periodic functions at discontinuity
jumps.

O(N log N)

Fourier Spectral
Implementation

Let’s take a generic PDE , where L is some
operator that has derivative terms as follows
and N is the rest (non linear terms & non constant coefficients).

The Spectral technique is to fast Fourier transform everything;
, where

Now you are in the fast Fourier domain so you are not solving for
time you are solving for the evolution in frequency domain.

ODE

Fourier Spectral
Implementation

Fast Fourier Transform in 2D
Fast Poisson Solver +
Periodic BC

Fast Fourier Transform
in x direction.

Fast Fourier Transform
in y direction.

Inverse the Fast Fourier
Transform to get solution

Fourier Spectral
Implementation

There exists various implementation of the spectral method and the most
common approach, namely is the Galerkin approach.

There are many tools available for working with spectral methods like
chebfun in Matlab and shenfun the Python module.

The shenfun’s purpose is to simplify the implementation of the spectral
Gherkin method, to make is easily accessible to researchers, and to make it
easier to solve the advanced PDEs on supercomputers. Found at
(github.com/spectralDNS/shenfun).

The Extreme Computing Research Center (ECRC) at KAUST, in collaboration
with the University of Oslo, Norway, has developed a new efficient
implementation of parallel FFT that is utilized by shenfun.

FFT Facts
Operation cost: O(N log N)

BC: Periodic

Discretization: 2n

Accuracy: Beyond all algebraic orders

FFT Packages
The existing FFT packages uses different algorithms.

Practically speaking in any language you will be able to find an FFT package

One of the most popular ones is written in C is called FFTW (the Fast Fourier Transform in the
West) and most languages will just wrap over that and it is very fast and if you are going to use
that all you need to know is that you have a function and you pass to the function your data
and the number of bins you want to calculate and it spits out an array of the Fourier Transform
where k the length of the array goes from zero up to the bins you chose. The output is two
dimensions. We take the absolute value of the first half of the output array.

The output doesn’t correspond to physical numbers you have to plot it such that it is
understandable.

Can Change number of bins based on the speed of the computer your are using.

Other available FFT packages: 2Decomp&FFT, AccFFT, P3FFT, PFFT, OpenFFT, CUFFT, FFT MKL. .

FFT Packages
Common Features

The 2D FFT is simply the 1D FFT applied first to each row and then to each
column of an array

Can compute:

For one or more dimensions.

For single and double precision where doubles store a much broader range of
values, and with much more precision.

For real and complex data.

For even or odd terms i.e. the discrete Sine or Cosine Transforms.

In Parallel shared/distributed memory for parallel one- and multi-
dimensional transforms of both real and complex data.

FFT Packages

FFTW packages
FFTW adapt itself to your machines, your cache, the size of memory, the number of register, etc…

FFTW doesn’t use a fixed algorithm to calculate DFT. It choses the best algorithm for your machines.

FFTW includes serial and parallel transforms for both shared and distributed memory system.

FFTW supports both real and complex transforms as well as even/odd, i.e. the discrete cosine/sine
transform or DCT/DST.

FFTW supports both single and double precision and it compiles the double-precision libraries by
default.

FFTW Computation is split into two phases: Plan creation and Execution.

Two major versions of FFTW are available: FFTW2 and FFTW3. These two versions are incompatible
and their interfaces are different. FFTW2 is now considered obsolete and has not been updated since
1999.

FFTW3
The fftw3 is used everywhere it is used in the
background of matlab.

The fftw3 supports Hybrid implementation MPI-
OpenMP.

www.fftw.org download from here. This library is
also a standard component of linux so it is directly
installed in a linux environment and you can use it and
I’ll just guide you through how this library is being
used.

How to Use? Install
In the webpage www.fftw.org can be found the source code of FFTW3. There it is explained
how it can be installed but, in most Linux environments, the following works:

1. Download the source code fftw-X.X.X.tar.gz from ftp://ftp.fftw.org/pub/fftw/fftw-
X.X.X.tar.gz

2. Decompress it:

$ tar -xvvf fftw-X.X.X.tar.gz

3. Enter the directory fftw-X.X.X:

$ cd fftw-X.X.X

4. Now, proceed to configure, compile and install the package:

$./configure && make && make install

If the above does not work, read carefully the documentation that is in www.fftw.org.

How to Use? Code Example

How to Use? Explain Code
Line 1 includes the header file fftw3.h needed in order to use the package.

Line 2 contains an integer N which has the dimension of the input and output
data of the FFT

Line 3 declares two pointers of type fftw_complex, in and out, which will
contain the input and output of the FFT. Note that to allocate memory we use
the function fftw_malloc instead of the sodlib.h function malloc,

Line 4 declares a variable of type fftw_plan, a plan, which will store the type
of FFT that we want to perform.

Lines 5 and 6 allocates memory for the pointers in and out. Note that it must
be specified that they are of type fftw_complex.

How to Use? Explain Code
Line 7 declares the type of plan which we want to perform via the function fftw_plan_dft_1d
which has the arguments

1. int N: the dimension of the pointers in and out.

2. fftw_complex *in: the pointer that stores the input data.

3. fftw_complex *out: the pointer that stores the output data.

4. int FFTW_FORWARD is an integer constant of the package that tells the function that the FFT
to perform must be the forward one. To perform the backward one, we will introduce
FFTW_BACKWARD.

5. unsigned FFTW_ESTIMATE is a flag that tell to the function how well must be optimized, with
respect to the computational time.

Line 8 performs the FFT stored in my_plan.

Lines 10, 11 and 12 deallocate the memory stored by the plan and the pointers. Note that for the
pointers we use fftw_free and not the sodlib.h function free.

How to Use? Compile

To compile this code with gcc we just type in
the following in the command line

$ gcc Example.c -lfftw3 -c Example.exe

How to Use? On ShaheenII
System Cray XC40 with 36 cabinets

Processor type Intel Haswell 2.3GHz, 2 CPU sockets per
node, 16 processors cores per CPU

Total Nodes 6174 nodes

Total Cores 197,568 cores

Memory 128 GB of memory per node, over 790 TB
total memory

Interconnect Cray Aries with Dragonfly topology

Scheduler SLURM

Storage Lustre parallel file system with 17.4 PB

How to Use? On ShaheenII
Three programming environments are supported on ShaheenII as in the below
table:

Use the compiler driver wrappers cc, CC, ftn to compile and link C, C++, and
Fortran codes respectively.

The wrappers are the same for all the programming environments.

Refer to the ShaheenII Get Started Flyer for more information about usage. It
can be found at
https://www.hpc.kaust.edu.sa/sites/default/files/files/public/GetStartedFlyer.
pdf

Flyer Page I

Flyer Page II

How to Use? On ShaheenII
Cray’s main FFT library is FFTW from MIT with some additional optimizations for
Cray hardware

Usage is simple

Load the module

In the code, call the FFTW plan

Cray’s FFTW provides wisdom file for these system. You can use the wisdom file to
skip the plan stage.

In FFTW the wisdom mechanism is used for saving plans.

When calling libraries installed by Cray, such as FFTW, LIBSCI, HDF5, NetCDF you do
not need to add –I, -L and –l flags. Instead, you will have to remove these paths from
your Makefiles.

How to Use? On ShaheenII
$ ssh -X username@shaheen.hpc.kaust.edu.sa

$ cd /scrach/username/FFTW

wget http://www2.math.uu.se/~figueras/fftw_tutorial/examples/EXAMPLE2_transform.c

cd EXAMPLE2_transform.c Example_2

$ salloc (to start an interactive session)

$ module avail -L (to lis all cary available libraries)

$ module avail fftw (to list all fftw versions)

$ module load fftw (to load the default version)

$ cc Example_2.c -o Example_2 (to compile on cray)

$ cc Example_2.c -Wall -lfftw3 -lm -o Example_2 (to compile on other platforms)

$ srun Example_2 (to run the executable)

How to Use? On ShaheenII
You can see all the used compile and link options using the wrapper
option -craype-verbose

$ cc -craype-verbose Example_2.c -o Example_2

The default link type is static, on the login nodes as well as on the
compute nodes. You can specify the link type using the -dynamic or -
static compiler/linker option, e.g.:

$ cc -dynamic Example_2.c -o Example_2

OR set the environment variable, e.g.:

$ CRAYPE_LINK_TYPE=dynamic

How to Use? On ShaheenII
OpenMP is supported by all of the PrgEnvs.

The CCE (PrgEnv-cray) recognizes and interprets OpenMP directives by default. If
you have OpenMP directives in your application but do not want to use them,
disable OpenMP recognition with -hnoomp.

Autothreading in NOT on by default;

-hautothread to turn on

Interacts with OMP directives

FFTW / Some Useful
Instructions

Including FFTW Lib:

For Serial Codes

C -> #include<fftw.h> & #include<fftwf.h> for single precision

Fortran -> include ‘fftw3.f03’ & include ‘fftw3.ff03’

Fort Parallel Codes

C -> #include <fftw-mpi.h> & #include <fftwf-mpi.h> for single precision

Fortran -> include ‘fftw3-mpi.f03’ & include ‘fftw3f-mpi.f03’ // // //

MPI Initialization:

C -> void fftw_mpi_init(void)

Fortran -> fftw_mpi_init()

Create Arrays
C:

* Fixed size array:
ff_complex data=[n0][n1][n2]

* Dynamic array
data = fftw_alloc_complex(n0*n1*n2)

* MPI dynamic arrays:
fftw_complex *data
ptrdiff_t alloc_local, local_no, local_no_start
alloc_local= fftw_mpi_local_size_3d(n0, n1, n2, MPI_COMM_WORLD, &local_n0,&local_n0_start)
data = fftw_alloc_complex(alloc_local)

FORTRAN:
* Fixed size array (simplest way):

complex(C_DOUBLE_COMPLEX), dimension(n0,n1,n2) :: data
* Dynamic array (simplest way):

complex(C_DOUBLE_COMPLEX), allocatable, dimension(:,:,:) :: data
allocate (data(n0, n1, n2)

* Dynamic array (fastest method):
complex(C_DOUBLE_COMPLEX), pointer :: data(:,:,:))
type(C_PTR) :: cdata
cdata - fftw_alloc_complex(n0*n1*n2)
call c_f_pointer(cdata, data, [n0,n1,n2])

* MPI dynamic arrays:
complex(C_DOUBLE_COMPLEX), pointer :: data(:,:,:)
type(C_PTR) :: cdata
integer(C_INTPTR_T) :: alloc_local, local_n2, local_n2_offset
alloc_local = fftw_mpi_local_size_3d(n2, n1, n0, MPI_COMM_WORLD, local_n2, local_n2_offset)
cdata = fftw_alloc_complex(alloc_local)
call c_f_pointer(cdata, data, [n0,n1,local_n2])

Plan Creation (C2C)
1D Complex to complex DFT:
* C :
fftw_plan = fftw_plan_dft_1d(int nx, fftw_complex *in, fftw_complex *out, fftw_direction dir, unsigned flags)

* FORTRAN :
plan = fftw_plan_dft_1d(nz, in, out, dir, flags)

2D Complex to complex DFT:
* C :
fftw_plan = fftw_plan_dft_2d(int nx, int ny, fftw_complex *in, fftw_complex *out, fftw_direction dir, unsigned flags)
fftw_plan = fftw_mpi_plan_dft_2d(int nx, int ny, fftw_complex *in, fftw_ complex *out, MPI_COMM_WORLD,
fftw_direction dir, int flags)

* FORTRAN :
plan = ftw_plan_dft_2d(ny, nx, in, out, dir, flags)
plan = ftw_mpi_plan_dft_2d(ny, nx, in, out, MPI_COMM_WORLD, dir, flags)

3D Complex to complex DFT:
* C :
fftw_plan = fftw_plan_dft_3d(int nx, int ny, int nz, fftw_complex *in, fftw_complex *out, fftw_direction dir, unsigned flags)
fftw_plan = fftw_mpi_plan_dft_3d(int nx, int ny, int nz, fftw_complex *in, fftw_complex *out, MPI_COMM_WORLD,
fftw_direction dir, int flags)
* FORTRAN :
plan = ftw_plan_dft_3d(nz, ny, nx, in, out, dir, flags)
plan = ftw_mpi_plan_dft_3d(nz, ny, nx, in, out, MPI_COMM_WORLD, dir, flags)

FFTW_FORWARD
FFTW_BACKWARD

FFTW_FORWARD
FFTW_BACKWARD

Plan Creation (R2C)
1D Real to complex DFT:
* C :
fftw_plan = fftw_plan_dft_r2c_1d(int nx, fftw_complex *in, fftw_complex *out, fftw_direction dir, unsigned flags)

* FORTRAN :
plan = fftw_plan_dft_r2c_1d(nz, in, out, dir, flags)

2D Real to complex DFT:
* C :
fftw_plan = fftw_plan_dft_r2c_2d(int nx, int ny, fftw_complex *in, fftw_complex *out, fftw_direction dir, unsigned flags)
fftw_plan = fftw_mpi_plan_dft_r2c_2d(int nx, int ny, fftw_complex *in, fftw_ complex *out, MPI_COMM_WORLD,
fftw_direction dir, int flags)

* FORTRAN :
plan = ftw_plan_dft_r2c_2d(ny, nx, in, out, dir, flags)
plan = ftw_mpi_plan_dft_r2c_2d(ny, nx, in, out, MPI_COMM_WORLD, dir, flags)

3D Real to complex DFT:
* C :
fftw_plan = fftw_plan_dft_r2c_3d(int nx, int ny, int nz, fftw_complex *in, fftw_complex *out, fftw_direction dir, unsigned
flags)
fftw_plan = fftw_mpi_plan_dft_r2c_3d(int nx, int ny, int nz, fftw_complex *in, fftw_complex *out, MPI_COMM_WORLD,
fftw_direction dir, int flags)
* FORTRAN :
plan = ftw_plan_dft_r2c_3d(nz, ny, nx, in, out, dir, flags)
plan = ftw_mpi_plan_dft_r2c_3d(nz, ny, nx, in, out, MPI_COMM_WORLD, dir, flags)

FFTW_FORWARD
FFTW_BACKWARD

FFTW_FORWARD
FFTW_BACKWARD

Plan Execution
Complext to complext DFT:
* C :
void fftw_execut_dft(fftw_plan plan, fftw_complex *in, fftw_complext *out)
void fftw_mpi_execute_dft(fftw_plan plan, fftw_complext *in, fftw_complex *out)

* FORTRAN :
fftw_execute_dft(plan, in, out)
fftw_mpi_execute_dft(plan, in, out)

Real to complext DFT:
* C :
void fftw_execut_dft(fftw_plan plan, double *in, fftw_complext *out)
void fftw_mpi_execute_dft(fftw_plan plan, double *in, fftw_complex *out)

* FORTRAN :
fftw_execute_dft(plan, in, out)
fftw_mpi_execute_dft(plan, in, out)

Finalizing FFTW
Destroying PLAN :
* C :
void fftw_destroy_plan(fftw_plan plan)
* FORTRAN :
fftw_destroy_plan(plan)

FFTW MPI cleanup :
* C :
void fftw_mpi_cleanup()
* FORTRAN :
fftw_mpi_cleanup ()

Deallocate data :
* C :
void fftw_free(fftw_complex data)
* FORTRAN :
fftw_free(data)

References
الطبفيوالفیزياءالكھرباءفيوالفلكالرياضیاتفيالعلماءمآثر

حوحوأسامةالمھندس،والكیمیاء

Note Books

Numerical Recipes The Art of Scientific Computing, William H. Press, Saul A. Teukolsky,
William T. Vetterling & Brian P. Flannery

Numerical Analysis, Richard L. Burden & J. Douglas Faires

Mathematical Methods in the Physical Sciences, Mary L. Boas

http://www.ime.unicamp.br/~ms211-cursao/sites/default/files/material-
didatico/machine-calculation-complex-fourier.pdf

http://www.fftw.org

http://www2.math.uu.se/~figueras/fftw_tutorial/fftw_tutorial.html

References
Philipp Grandcl´ement, Introduction to spectral methods, 5 place J. Janssen,
92195 Meudon Cedex, France

Philipp Schlatter, Spectral Methods, Computational Fluid Dynamics SG2212,
Version 20100301

M. Mortensen. Shenfun - Automating the Spectral Galerkin Method, In Bjørn
Helge Skallerud and Helge Ingolf Andersson (ed.), MekIT’17 - Ninth national
conference on Computational Mechanics. International Center for Numerical
Methods in Engineering (CIMNE)., 2017,
http://arxiv.org/abs/1708.03188.

M. Gentleman and G. Sande, "Fast Fourier transforms-For fun and profit," 1966
Fall Joint Comput. Conf., AFIPS Proc., vol. 29. Washington, D. C.: Spartan, 1966,
pp. 563-578.

Thanks!

MS2 & MS13 at
https://www.siam.org/meetings/pp18/

Twitter: @SamarHpc

