Fast Fourier Transforwms (FFT)

Samar Aseeri, PhD
Computational Scientist
King Abdullah University of Science and Technology - Building 1 -Office: 0128
samar.aseeri@kaust.edu.sa

www.fft.report

“Fourier” the Scientist

Mathewmatical Physicist.
Father of Mathewmatical Transforms

His major work, “The Analytic
Theory of Heat”, changed the way
scientists think about functions and
successfully stated the equations
governing the heat transfer in solids.

S — T ——
In 1807, he invented a techniqueto . Prior to Fourier’s work, no solution to
solve this equation: Fourier the heat equation was known in the
Transform. general case.

He applied this technique to explain

many heat transfer problems. . Fourier series is a way to represent any

periodic function as an infinite sum of
sines and cosines.

Power Series

We use power series to approximate complicated functions.

A power series is a series whose terms are functions of x.

NSO
This series usually arises as the Taylor series of some known function. Z o
7—-—‘5

These are called power series, because the terms are multiples of power x. Examples:

. Other power series to consider:

. Fourier series whose terms
involve sines and cosines.
Also, Legendre, Bessel, etc...

» legendre and Bessel in
which the terms may be
polynowials of the
functions.

Fourier Series

Problewms involving vibrations or oscillations occur frequently in
physics and engineering.

Examples like vibrating tuning fork, a pendulum and water waves.

Other examples as the heat conduction, electric and magnetic fields
and light does not appear to have anything oscillatory but turns
out to involve the sines and cosines which are used in describing
both simple harmonic motion and wave motion.

ln many problews, series called Fourier series, whose terwms are
sines and cosines, are wmore useful than power series.

Fourier Series

A Periodic function is a function that
repeats its values in reqular intervals or
periods. —~_ "L ~_

+ Fourier series for a periodic func’non o) of
period 2I TR

Fourier Series

. Example: Expand in a Fourier series the
sketched function £(x)

. Note £(x) is a function of period 211. In this

problew, instead of a sketch, you might have
been given {0, —n<x <0,

-f(x):: el N

F—f “

Fourier Series

0 Tind an we use:
n E

Thus a0 =1, and all ofﬁgran =().
e S L‘l g k] |

To find bawe use

» Putting these values" for the coefficients info Foun'er Series

e veset |

W—— *“

Fourier Series

« Dirichlet Conditions:

. Complex Forwm of Fourier Series:

. ——————

S ———

Integral Transforms

Iff(t) = ¢~ ', then the mtcgml

&5
o
woge B ATR

F—-—'.—f B ———
s a function of p. Starting with a function of +, we have wultiplied it by a function of p
and t. The function E(p) is called an integral transform of).

*

Integral transforms are used in a variety of applications, for example, in solving ODE
or PUE.

There are many different kinds of integral transforms with different names,
depending on what function of p and t we multiply by and what the range of
infegration is (the above example is called a Mellin transform).

Laplace and Fourier fransforms are the most widely used of all integral fransforws.

Laplace is considered a generalised Fourier transform.

Fourier Transforms

. This came as an answer to the question: is it possible fo represent a function
which is not periodic by something analogous to Fourier series?

. If you recall that an integral is a sum, it may not surprise you to learn that the
Fourier series that is a sum of terws is replaced by a Fourier integral to cover
hon periodic cases.

. : VAEIR i PH g
. If we go back to the complex Fourier series formulas: 3

l

1
e —innx/l
Cn 21 -If(x)e dx.

T —
and use substitutions to consider the case of a continuous range of frequencies. We
get the corresponding following formulas for the Fourier transforms;

Fourier Transforms

. To represent odd functions, we use the
Fourier sine transforms;

B

. To represent even functions, we use the
Fourier cosine transforms;

P—i ﬁ*

Fourier Transforms

. Separation of variable (also known as
the Fourier method) is a technique for
solving PPE equations, in which algebra
allows one to rewrite an equation so
that each two variables occurs on a
ditferent side of the equation.

« It ut=ux. suppose U= Xix) T(1)

FO_@X _ .
1 0 X }

. Solving each side separately with using
linearity gives the solution;

Y " anexp(—Cnt) sin(y/ CyX) + By exp(—Cpt) cos(y/ Cnx)

*

*

*

Fourier Transforms

Example: (Heat Equation)

Solution:

Fourier Transforms

. In such problems we use separation of variables method (Fourier method) to solve the problem.

« When the # of derivatives is more than the given boundary conditions it is not possible fo use
the separation of variable methods. In this case Fourier and Laplace fransforms are the way to

40.

» When the domain is from -s -> = we think of using the Fourier transform fo solve the problem.

d*v 9%v

Gx gz X TE®

. If we have the following problem;

v(x,0) = f(x), ZZ2 = g(x)

and then define the complex Fourier as

[v(x,t) ePtdx = 5(p,t) |

then the substitution in the problem equation will lead to the following solution:;

sine cpt] dp |

1 A00 B 1 d#(p,0)
v(x,t) =—[__ e® [7(p,0) coscpt + - ’;

Fast Fourier Transform
(FFT)

. In many application context the Fourier transform is
approximated with a Discrete Fourier Transform (DFT).

. Back to the general solution of the first heat equation
solved with Fourier method:

| 3 cnexp(—Cat)sin(v/Cox) + Bnexp(—Cnt) cos(/Cox) || = D" Yue

. The Fast Fourier Transform allows one to find good
approximations of the coefficients an, Bn When the solution
is found at a finite number of equally spaced grid points.

The Fast Fourier Transform
(FFT) Algorithwm

» Nuwerically efficient method to calculate DFT.

N-1 2 rnk :
X(k)=) x(n)e ¥ k=0..N-1
1=0

L — ———————— | | ;g\ ;

. It was originally developed by Gauss in 1809 but not recgi ed
until more modern times.

« In 1965 Cooley+ Tukey published a paper on the Fast Fourier
Transform and the efficient way to do it and of course the time
was right because the use of computer was growing and there
was a heed for faster and faster data analysis. g ﬂ

The Fast Fourier Transform
(FFT) Algorithwm

Why do we need FFT if we have DFT? The A ST

By James W. Cooley and John W. Tukey

reason is that DFT is computationally e o it 4
g sigoilsfor whieh o6 e of spolications & the cakoulation of Fourie

8
series, In their full generality, Good’s methods are applicable to certain problems in *
e which one must multiply an N-vector by an N X N matrix which ean be factored
into m sparse matrices, where m is proportional to log N. This results in a procedure

requiring & number of operations proportional to N log N rather than N*, These
methods are applied here to the caleulation of complex Fourier series. They are
useful in situations where the number of data points is, or can be chosen to be, a
highly composite number. The algorithm is here derived and presented in a rather
dﬂm t form. Attention is given to the choice of N. It hnhonho-nho special

The Cooley-Tukey FFT reduced the DFT B R A

Consider the problem of caleulating the complex Fourer series

L)
(1) xu)-;;‘A(k)-W‘. J= 0,1, N =1,

computations from 0(NZ) fo O(N log2N). e i i s

(2) W=

A st n\hhlorwmied ulation using (1) would require N* operations hare opera-
tion"" means, as it will throughout this note, a complex multiplicati d by a

complex addition.
The algorithm deseribed here iterates on the array of given complex Fou

The difference shows when N gets large (see e
table) I I
?)en’mm uxo. g = T Ak, ko) WhWH

N 1000 10° 10° e

27

Sequential Algorithm

We will begin rewminding our self with the DFT
' for each k : N complex mulfiplications + N

*

complex adds = N*N

» A more efficient way of calculating the DFT leads us to FFT.

What is the Trick/ldea behind the Fast Fourier Transform?

*

The idea is to divide the sequence X(n) into odd and even sequences.

*

X(2r) even sequence X(2r+1) odd sequence

2T, N-1 N1 N1
lf We pU‘l’I - WN = e J(N) ? We gef - X(k) = Zx(n)wﬁk = Z x(Zr)WNZT" + Z x(2r +1)Wa§2r+1)k i
/' —— =0 =0
5 s b w
@Dtﬁl@g ®§ F@Q@I@f m@tf’m N/y-1 Ny -1 '
= Z x(2r) (W2 + W Z x(@r + DWHY |

n=0

n=0

*

Sequential Algorithm

X(k) = DFT even JN/2 samples + DFT odd 2\'/2 samples

Total operations: () + Q) =5+ =% multiplications!
R —— T —

. 2 = o152 _ s e , N/pm1 Njpm1
Since _____W ____W il 80 therefore; |, _ Z; x(2rWy] + Wy Z, x(2r + W),
Example; N=8 —
| o Total Multiplications:

X Ny2- point

| x[4]o—>— DFT

| (N/2)2,2+N=N2/2+N
 x[6]o—»—|

X[1]o—p—|

| e To Compute back:

N/2- point
' sisles_| DFT xL01=EL0]+ 1V/QLO]
X7l x[11=EL01- WYL0]

| —

Sequential Algorithm

We started with NZ so if did the full FFT we ruffle cut things
by a factor of 2 using this approach.

This splitting saved us some computation so why not continving
this process.

The method consists of organising the problem so that the
number of data points J\" being used can be easily factored,
particularly into powers of 2.

Keep splitting: each N2 p > 2 N/2 p

How wmany times? N/2 N/2 . N/20L N/2e =1

Sequential Algorithm

What is the total # of wmultiplications in this FFT?
MI(N) = N2-» DFT
MI(N) = 2 MIN/2) + N -> FFT
Substituting MI(N) over and over again to observe a closed form:
> M(N) = 2(ZM(N/4) + N/2) + N
= 4M(N/4) +2N
> M(N)= 4(MIN/8) + N/4) + 2N
=8 MIN/4) +N + 2N
=8MI(N/8) + 3N

> MIN) = ZKMIN/24 + k N
For trivial PFT M(1)= 0 then, if N/2x=1=> N=2% =5 logzN = k

> MI(N) =N log2N

Sequential Algorithm

procedure ffHx, X n, w)
If n=1 then
XL01 = xL0]
else
for k=0 to (n/2)-1
pLk] = xL2k]
slk] = xL 2k+11]
end
ftip, g n/2, w?
fftls, t, n/2,w?
for k = 0 fo n-1
XUk1 = gLk mod (n/2)1 + wZtlk wmod (n/2)]
end
end

Sequential Algorithm

| x[0] o—r : X[0]
W /:’.{’-

xl.") I’—.') . /YI | l
Wy N

b X|2]

2

“,'N'
X|3]

N

‘ W,
W
> X 5]
\lw;:.
X16]

Wy

%
S

A

b

(

\
J

:"}‘.!'.L

TIEET

R

IAALESAALY
32153733

. 2 P FFE R
1 LH M3

Stage= 1

/
\

\

/\
Vi

}

IS
Vi

Ly

%’ \ﬁl
VIS

. §

/sgl; '\é:n
VAN TANY

:

A
\/

I\g%
\

.'\,y\.ﬁ
YIAY

AZa
e
‘l, 0‘,

XY |

N
RN

\

A7
\

/

g
/m\/} .

W A7

W\

17\\1 AN
Y

45
!

N

|

i

~

rdddd ry

1350

"‘a";,'.zl.‘ ..';,_‘

SUR M

Algoritm Mapping

A Full FFT will be done in stages.

Nuwmber of stages depends on the
number of points N which a
power of 2

For the case N=8= 2° the number
of stages is 3.

This mapping of the FFT
algorithw is called the Butterfly
diagram.

| x[1]q A ‘A\ |
VAP ¢ O

x[3] q) A .
| x[4] .X‘X‘X‘I. W_,\O, : 1

x[5]]
LS XK
) Swm/

[terative Sequential

Algorithm

XI()] 1 *

x[0] g . > . >
Wy

Wy

P N
"7 J . J . . .
17l 1 iy ig

o X[4]
0 X2
o 6] | *
o X[1]
o X[5]
| « We take 2 (n/2)-element DFT’s

o X[3]

o X[7]

We take the elements in pairs,
compute the DFT of each pair,
using one butterfly operation,
and replace the pair with its DFT

We take these n/2 PFT’s in
pairs and compute the DFT of
the four vector elements

and combine them using n/2
butterfly operations into the
final n-element PFT

[terative Sequential
Algorithm

1. procedure ITERATIVE_FFT(x, X, n)
. begin
r:=logwn
for i= 0 to n-1 do RLi1 := xLil;
for m:=0 tor-1 do
begin
for i:= 0 to n-1 do SLil := RLiJ;
for i:= 0 to n-1 do
begin
/* Let (b0, b1, b2, ... br-1) be the binary representation of i */
j = (bo ... bm-10bwe1 .. br-1);
k :=(bo ... bw-1 1Dt .. br-1);:
RLi1 := SLj1 + STk x wibyby-1-090-0) :
endfor:
. endfor:
. for i:= 0 to n-1 do XLil := RLil:
16. end ITERATIVE_FFT

Other FFT Algorithms

Any algorithm that reduces operations for the DFT is called FFT. Therefore, the
FFT is not just one algorithm and the simplest one was discovered by Cooley+
Tukey and it is the serial algorithm where we divide the even and odd terms to
reduce the number of operations.

Another class of FFTs subdivides the initial data set of length N not all the way
down to the trivial transform of length 1

There are also FFT algorithwms for data sets of length N not a power of two.

MPI Parallel FFT algorithm where all butterflies in a stage can be performed in
parallel and then at the end of the stage, the results can be gathered. (not very
efficient and creates a lot of overheads)

20 and 3D FFT algorithwms

Parallel FFT Algorithwms

There are two approaches for parallelizing:

1. Binary Exchange Algorithms: Where tasks
exchange data at each stage of the serial
algorithwm.

2. Transpose algorithms: Where dafa are
transposed using all-fo-all personalised collective
comwunication if the array is partitioned by
columns each raw of data array is now stored in
single task.

Binary Exchange FFT

. Data exchange takes place between all pairs
of processors that differ by one bit.

. One element per processor is Easy.

. For Multiple elements per processor we
Assign contiguous blocks to processors and
we get same algorithm, just exchange blocks.

Binary Exchange FFT

000%(® Y(0)

\ / v >< Po
001X%(1) \ " / " Y(4) ----=-==-
010x(2) % ><Y(2) P,
011X(3) = Y(6) =========+
100X%(4) 5 >< i) P,
101X(5) / \ Y(5) ---nnnne-

110%(3) Y(3) P3

111X(7) > = Y(7)
o

< D
r

Binary Exchange FFT

d - number of bifs for representing processes; r — number of bits
representing the elements

The d wmost significant bits of element i indicate the process that
the element belongs fo.

Only the first d of the r iterations require comwunication

In a given iteration, wm, a process i communicates with only one
o’rhellz process obtained by flipping the (m+1Mh wost significant
bit of i

Total execution time - 7 (W/P) long n + log P + (n/P) log P

Binary Exchange FFT

. Big bandwidth requirement: Communication
inereases as n increases.

. [Duplicated computations: Powers of w
cannot be pre-calculated and it is used at
different times on different processors

The Transpose FFT

. The data is arranged in a sqril{n) x sqri{n)
two-dimensional square array

. Rather than do an exchange franspose the
mafrix halfway through algorithm

The Transpose FFT

® O 006 © 0006

® 6.6 0 @060

® © W © ® © O W . Notice:

@0 e @0 @®® . purw

() Iteration m =0 (b) Iterationm = 1 iterations are
columnwise

ONONONO © O ® 06 + Jasttwo

: S \ T N iterations are

@ 6 © @ @@@@ rowwise

® ® @ ® ® @

® 0O ® O ® 0 ® 6

(c) Iteration m =2 (d) Iterationm =3

The Transpose FFT

« P processes arranged along columns. Each
process owns sqri{n/p) columns.

. Each process does sqrt(in/p) FFTs of size
sqriln) each.

« Parallel runtime - 2(sqrt{n)/p)*
sqriln)*loglsqri{nl) + (p-1)+ n/p(b)

Which Algorithm is
Better?

Binary exchange - small latency, large bandwidth

20 franspose - large latency, small bandwidth

Transpose algorithm is easy to generalize to
higher dimensions

It depends on the architecture and amount of
data

Fourier Techniques &
Applications

One of the major computational methods that uses FFTs is the so-called
Spectral Methods.

Spectral Methods are just one of the many ways to represent a function
on a computer.

Fourier series are particularly suvited for the discretization of periodic
domain.

An efficient way to compute this is via fast Fourier transform (FFT) for
the following reasons:

@ = (il f | the Fourier fransform of the

« the FFT major relation:

ntt derivative.

+ the speed 0(N2) —5 O(N log N)

Fourier Techniques &
Applications

The idea behind Fourier is the following Fourier transform represents
functions in frequency space versus time domain or spatial domain.

oo

F(k) = fe‘"‘"f(x)dx
Unlike FPM where we ¢hop ot the dowiain o a certain number of points
and to evalvuate the solution we depend on neighbors so everything is local if
you want to calculate a second derivative for instance each point cares
only about its neighbors.

flx) = o fe"‘xF(k)dk

—00

For Spectral methods everything is represented in ferms of Sines & Cosines
which are global modes and lives on the whole domain and with this you
get big accuracy gains.

Spectral methods with Fourier bases limits you fo a very small boundary
condition sef.

Fourier Techniques &
Applications

Spectral methods with Chebyshev basis allows a little bit more flexibility with how would
you do with boundaries.

Accuracy & Speed makes one work hard to modify things to can still make use of these
spectral routines.

For non-periodic B.C. one of method fo use is the Periodic Extensions for the function.

Fourier said: | can take any function and represent it in terms of Sines and Cosines.

Gibbs phenowenon is the behavior of Fourier series for periodic functions at discontinvity
jumps.

Fourier Spectral
lmplementation

Let’s take a generic PDE #: = Lu+ N(u) ' where L is some
operator that has derivative terms as follows L - a6%z + oz +
and N is the rest (non linear terms & non constant coefficients).

The Spectral technique is to fast Fourier fransform everything:
,where | 4, = q(k)i+ N L T

d k20 4 ikbd 4 ci
= (—ak? + ikb + ¢)i

__*

Now you are in the fast Fourier domain so you are not solving for
time you are solving for the evolution in frequency domain.

Fourier Spectral
lmplementation

. Fast Fourier Transform in 20 Vi=w

Fast Poisson Solver +
Periodic BC

Fast Fourier Transform
in X direction.

Fast Fourier Transform
in y direction.

Inverse the Fast Fourier
Transform to get solution

Fourier Speciral
lmplementation

There exists various implementation of the spectral method and the most
comwmon approach, namely is the Galerkin approach.

There are many tools available for working with spectral methods like
chebfun in Matlab and shenfun the Python module.

The shenfun’s purpose is to simplify the implementation of the spectral
Gherkin method, fo make is easily accessible to researchers, and to make it
easier o solve the advanced PPEs on supercomputers. Found at
(github.com/ spectralNS/ shenfun).

The Extreme Computing Research Center (ECRC) at KAUST, in collaboration
with the University of Oslo, Norway, has developed a new efficient
implementation of parallel FFT that is utilized by shenfun.

Xk

%k

xk

%k

FFT Facts

Operation cost: O(N log N)
BC: Periodic
Discretization: 2"

Accuracy: Beyond all algebraic orders

FFT Packages

The existing FFT packages uses different algorithws.
Practically speaking in any language you will be able to find an FFT package

One of the most popular ones is written in C is called FFTW (the Fast Fourier Transform in the
West) and most languages will just wrap over that and it is very fast and if you are going fo use
that all you need to know is that you have a function and you pass to the function your data
and the number of bins you want to calculate and it spits out an array of the Fourier Transform
where k the length of the array goes from zero up to the bins you chose. The output is two
dimensions. We take the absolute value of the first half of the output array.

The output doesn’t correspond to physical numbers you have to plot it such that it is
understandable.

Can Change number of bins based on the speed of the computer your are using.

Other available FFT packages: 20ecomp&FFT, AccFFT, P3FFT, PFFT, OpenFFT, CUFFT, FFT MKL. .

FFT Packages
Common Features

. The 20 FFT is simply the 10 FFT applied first to each row and then to each
column of an array

. ban compute:

%

P

For one or more dimensions.

For single and double precision where doubles store a much broader range of
values, and with much wore precision.

For real and complex data.
For even or odd terws i.e. the discrete Sine or Cosine Transforws.

In Parallel shared/distributed mewmory for parallel one- and multi-
dimensional transforms of both real and complex data.

FFT Packages

Padkcage | Languag Description _ Download: https:/ /www.p3dfft net/download
o 5 | OpenFFT OpenFFT is an open source parallel padkage for
FFTW | Written | The fastest Fourier Transform in the West, is a computing multi-dimensional Fast Fourter
inChut | popular open-source library for computing discrete Transforms (3-D and 4-D FFTs) of both real and
can be Fourier transforms in one or more dimensions, of complex numbers of arbitrary input size. It adopts a
used for | arbitrary input size, and of both real and complex communication-optimal domain decompasition
Cand data (as well as even/odd, i.e. the discrete methoed that is adaptive and capable of localizing
:‘,&, " . C u:'m o Dﬂ{bl::h‘l'. and ::dtr for mdu::gn mln:::hme of nee
Itis written in rts real com
transformations in b;uhpr:ygh and double mﬁx communication. It is written in C and MPI, with
Download: http: //www.fftw.org/download.html support for Fortran through the Fortran interface,
2deomp&f | Written | The 2DECOMPAFFT library is a software framework and employs FFTW3 for computing 1-D FFTs. Itis
ft in in Fortran to build large-scale parallel applications. :“bl"i“ T°.kY°-
Fortran | Itis designed for applications using three- - _— °"_"l°'u ahr::;l / m'wn;‘l‘l:ﬁ[@:‘?/
and dmenslo:lnll structured mesh and spatially implicit AccFFT MCPU/FGIPU : “wm P"n - Yy
ze meri thms rchitectures. Acc spedifically
:F(‘;tnm g'mh?d: gort designed with the goal of achieving maximum
needs -/ Jwww 2decomp.org/downl performance and scalability for both CPUs and GPUs
be bl 2 cachtm] It uses a series of novel algorithms to reduce
develope communication casts inherent in distributed FFTs.
din Download: https:/ /github.com/amirgholami/accfft
order to 7 FFTE A package to compute Discrete Fourier Transforms
ol of 1-, 2- and 3- dimensional sequences of length
Written | Presents curier Tansforms (2*p)*(3%q)*(5%1).
bl i b L Download: http: //www.fite jp
inCand | massive llel distributed mem — - :
€ and | massvely paraliel diamibe Mesage Passing @ [FFT KL Tntel has its own version of FFT code implemented
used for Interface standard (“Pn. as m of the Intel Math Kernel ljrary MKL, which
bothC | This library offers great flexibility and portable "‘“wm for lntel architecture-based
e n m“‘,t"“m""m“”"m'”"m”“, ",_;:m,ﬂy' e 9 [cuPFT The NVIDIA CUDA Fast Fourter Transform library. It
codes distributed memory architectures. provides a simple interface for computing FFTs up
Download: htt 'my[[!!a:b.udln 3u/~dubey/piR/ to 10x faster. By using hundreds of processor cores
PADFFT Itis a library for large-scale computer simulations :’::’: mo&m‘:mmmﬁ*
onl palrallenll 3D FF"I‘tsanl my develop your own custom GPU FFT implementation.
- for stmulations in a range of fields, Download: https://developer.nvidia.com/cufft
ncluding stucios of tusbulence, claminiony. T | Paralel hetp:// www.sandlia gov/ ~sjplimp/3ocs/ ft/READM
astrophysics and material science. This project was o PET B hevnl
initiated at San Diego Supercomputer Center (SDSC). _
Its approach had shown good scalability up to T — T ————
524,298 cores.

P3DFFT is written if Fortran90 and is optimized for
parallel performance. It uses Message Passing
Interface (MPI) for interprocessor communication,
and starting from v.2.7.5 there is 2 multithreading
option for hybrid MPI/OpenMP implementation. C

interface is avatlable,. The package depends on a
eerial FPT Hbrarv such and FFTW ar BSSL

L ——— ————

FFTW packages

FFTW adapt itself to your machines, your cache, the size of memory, the number of register, ete...
FFTW doesn’t use a fixed algorithm to caleulate DFT. It choses the best algorithm for your machines.
FFTW includes serial and parallel fransforms for both shared and distributed memory system.

FFTW supports both real and complex transforms as well as even/odd, i.e. the discrete cosine/sine
transform or PCT/VST.

FFTW supports both single and double precision and it compiles the double-precision libraries by
default.

FFTW Cowmputation is split into two phases: Plan creation and Execution.

Two major versions of FFTW are available: FFTW 2 and FFTW 3. These two versions are incompafible
and their interfaces are different. FFTW 2 is now considered obsolete and has not been updated since
1999,

FFTW3

» The tHtw3 is used everywhere it is used in the
background of matiab.

. The tftw3 supports Hybrid implementation MPI-
OpenMP.

. www.tftw.org download from here. This library is
also a standard component of linux so it is directly
installed in a linux environment and you can use it and
I'll just quide you through how this library is being
used.

How 10 Use? Install

. In the webpage www.tfiw.org can be found the source code of FFTW3. There it is explained
how it can be installed but, in wost Linux environments, the following works:

1. Download the source code fftw-X.X.X.tar.gz from ftp://ttp.tftw.org/pub/ffiw/tHw-
X.X.X.tar.gz

2. Decompress it:
$ far -xwi fHiw-X.X.X.tar.gz
3. Enter the directory fiiw-X.X.X:
$ cd fHw-X.X.X

4. Now, proceed fo configure, compile and install the package:

$./configure £& make && make install

. |f the above does not work, read carefully the documentation that is in www.tftw.org.

How to Use? Explain Code

Line 1 includes the header file fftw3.h needed in order to use the package.

Line 2 contains an integer N which has the dimension of the input and output
data of the FFT

Line 3 declares two pointers of type fftw_cowmplex, in and out, which will
contain the input and output of the FFT. Note that to allocate memory we use
the function tftw_wmalloc instead of the sodlib.h function malloc,

Line 4 declares a variable of type fftw_plan, a plan, which will store the type
of FFT that we want fo perform.

Lines 9 and 6 allocates mewmory for the pointers in and out. Note that it must
be specified that they are of type ffitw_complex.

How to Use? Explain Code

. Line 7 declares the type of plan which we want to perform via the function fftw_plan_dft_1d
which has the arguments

1. int N: the dimension of the pointers in and out.
2. ftiw_complex *in: the pointer that stores the input dafa.
3. fftw_complex *out: the pointer that stores the output data.

4. int FFTW_FORWARD is an integer constant of the package that tells the function that the FFT

to perform must be the forward one. To perform the backward one, we will introduce
FFTW_BACKWARD.

5. unsigned FFTW_ESTIMATE is a flag that tell fo the function how well must be optimized, with
respect to the computational time.

. Lline 8 performs the FFT stored in my_plan.

. Lines 10, 11 and 12 deallocate the mewory stored by the plan and the pointers. Note that for the
pointers we use fftw_free and not the sodlib.h function free.

How to Use? Compile

. To compile this code with gec we just type in
the following in the command line

$ gee Example.c -Ifftw3 -¢ Example.exe

How to Use? On Shaheenll

System Cray XC40 with 26 cabinets

Total Nodes 6174 nodes

128 GB of mewmory per node, over 790 TB

SLURM

Scheduler

How to Use? On Shaheenll

Three programwing environments are supported on Shaheenll as in the below
table:

PrgEnv Description Real Compilers
PrgEnv-cray |Cray Compilation Environment | crayftn, craycc, crayCC

PrgEnv-intel | Intel Composer Suite ifort, icc, icpc
PrgEnv-gnu | GNU Compiler Collection gfortran, gcc, g++

Use the compiler driver wrappers ce, CC, ftn to compile and link C, C++, and
Fortran codes respectively.

The wrappers are the same for all the programwming environments.

Refer to the Shaheenll Get Started Flyer for more information about usage. It
can be found at
https://www.hpe.kaust.edu.sa/sites/default/files/files/public/GetStartedFlyer.

pdf

Flyer Page |

eilifly pyat SUPERCOMPUTING

ol s Jlladl dsaly ‘ L)“A“(l N
Q7 Lplean et | LABORATORY

Shaheen |l Get Started

Shaheen [Spec;
. System ‘ Cray XC40 with 36 cabinets ‘
i Processortype Intel Haswell 2.3GHz, 2 CPU sockets per
‘: node, 16 processors cores per CPU
- Totsl Nodes 6174 nodes ;
TotslCores 197,568 cores \
Memory 128 GB of memary per node, over 790
78 total memory
 Interconnect Cray Aries with Dragonfly topology
| Scheduler SLURM
~ Storage Lustre paeallel file system with 17.4 P8
Tologin:

$ssh < userxunw>@§hahe¢n.hpu kaustedusa

Lagin with "-X* ar *-Y" to enable X11 forwarding,
To compile;

Three pragram:ming environments are supported.
i.e. PrgEnv-cray [default), PrgEnv-intel, and PrgEny-
#nu. Use madule swap to change PrgEnv, eg.

$ madule swap PrgEny-cray PrgEnv-intel

Use the compiler driver wrapperss cg, CC fin o
compile and link €, C++, and Fortran codes,
respectively. The wrappers are the same for all
programming environments. For example

(€ cc-c<any other Mlagss progc

_Ces CC-c<anv other Aags>progeon
Fortran ftn -c <any_other_flags> prog 50

Within a programming environment a user cn

switch between different compiler versions.

[$ madule swap coe cee/8.4.0

Scheduler and Queues

Torun:

* SLURM :s the batch scheduler. The lallowing is
@ basic example of o batch seript:

#!/bin/bash

ASBATCH —-acount-ke e
#SBATCH —-job-name=job_name
#SBATCH --putput=joh_name.out
ASBATCH —-error=job rame.err
#SBATCH —-nodes=4

#SBATCH --tinme=00:30:00

stun --ntasks=128 --hint=romultithread --ntasks-
pec-node=32 —-ntasks-per-socket=16 fexw

* Hyperthreading is enabled by default and might
improve the performance of some cades. Use *--
hint=nomultithread® option in the execulion
line to disable it For binding tasks to cares you
can use "=-gpu_bind=rank”.

* Launch/Cancel jobs with:

$ sbatch job scriptsh
§scarel job id

Queyes:

¢ Use "sinfo” for the gueue status and "squeue”
1o observe your job status.

* workq: Delault queue with a maximum 24
hours wall clock timne,

* 72hours: Queue with a maximum of 72 hours
wall clock tme. Mainly intended lor pre/post
processing and running one node job that
cannot be check-pointed to finish within a
stipulated 24 hours wall clock Ume Add the
lollewing in your job script to use the 72 hours
queue,

Ui_fk;illj"k@l;
¥SBATCH --partition=72hcurs
¥SBATCH —-qas=72hours

Storage, Quotas, Allocations

Tostore;

* Storage Compute nades can access only
Jscratech and fproject directories. |abs
submitted from fhame will fail

* Shomre/f<username>: Home directory, designed
for development, gquots ol 200GH. Previous
versions ol [Lles can be recavered [rom
Jhomef<usernames/snapshot directory.

* [scratch/<username>: Temporary individual
storage lor data needed lor execution. Files not
accessed in the last 60 days will be deleted.

* Jscratch/project/kb¥: Temparary starage
{or the project Files not accessed in the last 60
days will be deleted.

* Jfproject/Kmm: 20 TE per project. All liles are
copied to tape. Once 3 project has used 20 TH of
disk storage, liles will be automatically deleted
{rom disk with a weighting based on date of last
access. Stub fles will remain on disk that link to
the Lape capy.

* fscratch/tmp: temporary lolder that will be
cleaned every 3 days.

Tocheck:

* Your Group inlormation, use the "groups”
command

* Your allecation inlormation use the “sb®
command, e.g.

wsernamedodi S~ sh kan
Project koot MEMBER_INFD
PLPINAME

Allagations Caore hours
2015-06-25 50000000
2014-0%-02 50

Expiry on 2020-01-01

Allagated 5000050

Flyer Page Il

Compiler Flags

¢ Following table displays some advanced Hags

Feature | Cray Intel

apiler (-0%) (02)
optimization kevel
-0 -Mpd “Dfast -ty
roded

fastad
opennp

Aggressive
Opeimization
Adivate Opesnp Banp
Arectives and (defanin)
peagmas in the
e

GNU
03 -flast-
math

“Ofst ~mavx -
furroll-loogs

fopenip

Desactivane Moacanp
OpeaNP

Read and write -2 ~conavert
g eosdl

Fowtran Wreswiglo
wformatted data

filex as g-endlan

Procesx Foetran I fixed flved
sowrce salng fived
form

wecil)

rocess Foetran Alree Iree
sowurce salng free
form
wpecificatioas.
Shaw versben -V ~verslen
rarmber of the
caerpller.
Zero R all <& zero
wminisaloed
variabies
Creanes wnd files -m
1o oM Tortrami0
ot ke
infarmation far
feture ¢ les

151
i

Spcifies he IV e
Arectony 1o which

e mod Bles e
wrimen when the -
e moption is
spexified

firee-foem

Listing compller
fredbanks
peodices st fles

Slist “pr-
— | repartd

Ao e
all

* For more information on individual compilers

=
|

’ Prabav-intel

} C Ce+
‘ man crayec man crayCC
l man ke man kkpc

|mn-- |—w man e

Fortran
-ﬂ-h
man foct

man gfortras

|
|
|
|

Software & Libraries

* Before requesting the installation of new
packages or libraries, please check if the
desired package is already installed on the
system.

* Tolind the list of all the packages installed:

['$ module avail |

* Tolind a specitic package:

l S module avail --Iunlg 2kl Iurqi XXRX]

* Togetinformation on the package usage:

§ maoddule help xxxx
§ module show xexx

* To display Cray Scientific Libraries execute
the lollowing line:

$ module avail -1

Here s a selection of Ebraries and applications
already installed an Shaheen 11:

* /0 Libraries
» HDF5, NetlCDF
¢ Numerical Libraries
o LIBSCI PETCS, FFTW, MKL, ...
* Visualization Tools
o Gnuplat, Paraview
¢ Debugging Tools
o lpdb, atp, Allinea, Totalview, STAT
¢ Perlormance tools
o Craypat, Allinea, PAPL
* Some Third party Soflware
o VASP, CPZK, NAMD, LAMMPS, ...

General Tips

* Currenty, static linking s the default To switch
between diflerent link types you can either set
CRAYPE_LINK_TYPE Lo "static® or "dynamic” or
pass the "-static” ar "-dynamic” option o the
linking wrapper (cc, CC or fin).

* LIBSCI is the collection of numerical routines
aptimized lor best perlormance on Cray
systems. I gathers BLAS, LAPACK, SCALAPACK
and is highly recommended o be used instead
af your own versions,

* When calling libraries installed by Cray, such as
LIBSCI, HRFS, NetCDF you do not need Lo add -
I, -L and -l Nags. Instead, you will have to
remove these paths [rom your Makefiles.

¢ Delault 170 striping is 1, optimal lor many cases
especially when every MPL process writes 1 its
awn lile resulting in as many liles as number of
processes used.

* Increase the stripe count when multiple
processes write Lo a single shared Lle as with
MPI-I10 and HBF5 or NetCDF. Use the tollowing
command with a maximum stripe count of 144:

| $ s sesstripe —count [siripe-couns] lilename/directory |

To getan account;

* KAUST members should Lll-in the I[ndividual
Access Application (1AA) and the Project

Proposal (PP) lorms. Forms are available at:

Eor more information:

* Please visit the user guide and training
materials at hitp:/fhpekaustedusas)

¢ Please email any issues/lorms ta
help@hpckaustedu.sa so that the KSL statl can
set back o you immediately.

* Fallow us an Twitter: twitter.com /KAUST_HPC

Frepared By S Aseeri[KSLL B Hadn(RSLY A Esposiiod Cray), Octobier 2815

How to Use? On Shaheenll

Cray’s main FFT library is FFTW from MIT with some additional optimizations for
Cray hardware

Usage is simple
. Load the module
+ In the code, call the FFTW plan

Cray’s FFTW provides wisdowm file for these system. You can use the wisdom file to
skip the plan stage.

In FFTW the wisdom mechanisw is used for saving plans.

When calling libraries installed by Cray, such as FFTW, LIBSCI, HPFS, NetCDF you do
not need fo add -1, -1 and -| flags. Instead, you will have to remove these paths from
your Makefiles.

How to Use? On Shaheenll

5 ssh -X username@shaheen.hpe.kaust.edu.sa

$ cd /serach/username/FFTW

woaet hitp://www2.math.yu.se/ figueras/tftw_tutorial/examples/EXAMPLEZ transform.c
cd EXAMPLEZ_transform.c Example_2

$ salloc (to start an interactive session)

$ wmodule avail -L (to lis all cary available libraries)

$ wmodule avail fftw (to list all fftw versions)

+» % module load tftw (to load the default version)

. 9 cc Example_2.¢c -0 Example_2 (to compile on cray)
. 4 cc Example_2.c -Wall -Iifftw3 -lm -0 Example_2 (to compile on other platforms)

$ srun Example_2 (to run the executable)

How to Use? On Shaheenll

You can see all the used compile and link options using the wrapper
option -craype-verbose

$ cc -craype-verbose Example_2.c -o Example_2

The default link type is static, on the login nodes as well as on the
compute nodes. You can specify the link type using the -dynawic or -
static compiler/linker option, e.g.:

. 5 cc -dynamic Example_2.¢c -o Example_2
OR set the environment variable, e.q.:
. 9 CRAYPE_LINK_TYPE=dynamic

How to Use? On Shaheenll

. OpenMP is supported by all of the PrgEnvs.

. The CCE (PrgEnv-cray) recognizes and interprets OpenMP directives by default. If
you have OpenMP directives in your application but do not want to use thew,
disable OpenMP recognition with -hnoomp.

PrgEnv Enable OpenMP Disable OpenMP
PrgEnv-cray -homp -hnoomp
PrgEnv-intel -openmp
PrgEnv-gnu -fopenmp

. Autothreading in NOT on by default:
. -hautothread to turn on

« Interacts with OMP directives

FFTW / Some Useful
Instructions

+ Including FFTW Lib:
» For Serial Codes
« 0> #includectfiw.h> & #include<tftwt.h> for single precision
. Fortran -> include ‘tHw3.03° & include “fHiw3.t£03°
» Fort Parallel Codes
« 0 -> #include <tHiw-mpi.h> & #include <HHwf-mpi.h> for single precision
. Fortran -> include “tHw3-mpi.f03° & include ‘tHw3t-wpif03° // 7/ //
» MPI Initialization:
. G -> void tHiw_mpi_initlvoid)
. Fortran -> tiiw_wpi_init()

Create Arrays

C:
Fixed size array:
ff_complex data=Ln01ln11ln2]
« Dynawmic array
data = fftw_alloc_complex(n0*n1+*n2)
MPI dynawmic arrays:
fftw_complex *data
ptrdiff_t alloc_local, local_no, local_no_start
alloc_local= fftw_wpi_local_size_3d(n0, n1, n2, MPI_COMM_WORLD, &local_n0,£local_n0_start)
data = ffiw_alloc_complex(alloc_local)
FORTRAN:
« Fixed size array (simplest way):
complex(C_POUBLE_COMPLEX), dimension(n0,n1,n2) :: data
« [ynawmic array (simplest way):
complex(C_POUBLE_COMPLEX), allocatable, dimension(:,:,:) :: data
allocate (data(n0, n1, n2)
Pynawic array (fastest method):

typelC_PTR) :: edata

cdata - fftw_alloc_complex(n0*n1*n2)
call ¢_f_pointerlcdata, data, Ln0,n1,n2])
MPI dynawic arrays:

typelC_PTR) :: edata

integer(C_INTPTR_T) :: alloc_local, local_n2, local_n2_offset

alloc_local = fftw_wmpi_local_size_3d(n2, n1, n0, MPI_COMM_WORLD, local_n2, local_n2_offset)
cdata = fftw_alloc_complex(alloc_local)

call ¢_f_pointer{cdata, data, Ln0,n1,local_n2])

Plan Creation (C20)mmmrs

FFTW_BACKWARD

10 Complex to complex DFT:
ok c : /

_plan = fftw_plan_dft_1dlint nx, fftw_complex *in, fftw_complex *out, tftw_direction dir, unsigned flags)

« FORTRAN:
. : FFTW_FORWARPD
plan = ffiw_plan_dft_ld(nz, in, out, dir, flags) FFTW_BACKWARD

20 Complex to complex DFT:
«~ 0
_plan = fHiw_plan_dft_2d(int nx, int ny, fftw_complex *in, fHiw_complex *out, tfiw_direction dir, unsigned flags)
frtw_plan = fftw_mpi_plan_dft_2d(int nx, int ny, fftw_complex *in, ffiw_ complex *out, MPI_COMM_WORLP,
_direction dir, int flags)

« FORTRAN :
plan = fiw_plan_dft_2d(ny, nx, in, out, dir, flags)
plan = ttw_wmpi_plan_dft_2d(ny, nx, in, out, MPI_COMM_WORLPY, dir, flags)

3D Complex fo complex DFT:

el

frtw_plan = tHiw_plan_dft_3dlint nx, int ny, int nz, fftw_complex *in, fftw_complex *out, fHiw_direction dir, unsigned flags)
frtw_plan = fHiw_mpi_plan_dft_3d(int nx, int ny, int nz, fftw_complex *in, fftw_complex *ovt, MPI_COMM_WORLD,
fftw_direction dir, int flags)

« FORTRAN:

plan = fiw_plan_dft_3d(nz, ny, nx, in, out, dir, flags)

plan = ttw_wmpi_plan_dft_3d(nz, ny, nx, in, out, MPI_COMM_WORLD, dir, flags)

Plan Creation (R20) =

10 Real to complex DFT: FFTW_BACKWARD
ST
_plan = fftw_plan_dft_r2c¢_1d(int nx, fHiw_complex *in, fHiw_complex *out, fftw_direction dir, unsigned flags)

« FORTRAN : FFTW_FORWARPD
plan = tftw_plan_dft_r2c¢_1d(nz, in, out, dir, flags) FFTW_BACKWARPD

20 Real to complex DFT:
«~ 0
_plan = fHiw_plan_dft_r2¢_2d(int nx, int ny, fftw_complex *in, fHiw_complex *out, tfiw_direction dir, unsigned flags)
fttw_plan = fftw_wpi_plan_dft_r2c¢_2d(int nx, int ny, tHiw_complex *in, tftw_ complex *out, MPI_COMM_WORLD,
_direction dir, int flags)

« FORTRAN :
plan = fiw_plan_dft_r2¢_2d(ny, nx, in, out, dir, flags)
plan = ttw_wmpi_plan_dft_r2¢_2d(ny, nx, in, out, MPI_COMM_WORLPD, dir, flags)

30D Real to complex DFT:

« 0

frtw_plan = fftw_plan_dft_r2c¢_3d(int nx, int ny, int nz, fHiw_complex *in, ffiw_complex *out, ffiw_direction dir, unsigned
flags)

fttw_plan = thtw_wpi_plan_dft_r2¢_3d(int nx, int ny, int nz, fftw_complex *in, fftw_complex *out, MPI_COMM_WORLPD,
fftw_direction dir, int flags)

« FORTRAN :

plan = fiw_plan_dft_r2¢_3%d(nz, ny, nx, in, out, dir, flags)

plan = ttw_wmpi_plan_dft_r2¢_3%d(nz, ny, nx, in, out, MPI_COMM_WORLD, dir, flags)

Plan Execution

Complext to complext DFT:
il
oid fftw_execut_df{ffiw_plan plan, fftw_complex *in, ffiw_complext *out)
oid fftw_wpi_execute_dft{tfiw_plan plan, fftw_complext *in, tftw_complex *out)

« FORTRAN:
fftw_execute_dftlplan, in, out)
frtw_mpi_execute_dft{plan, in, out)

oid tftw_wmpi_execute_dft{fHiw_plan plan, double *in, tftw_complex *out)

« FORTRAN:
fftw_execute_dftlplan, in, out)
frtw_mpi_execute_dft{plan, in, out)

Finalizing FFTW

« FORTRAN:
fftw_destroy_plan(plan)

FFTW MPI cleanup :
s

oid ;‘th_free(ff“hN_complex data)
~ FORTRAN :
tftw_freeldata)

*

v‘_.. _ﬁ-_‘: i B
ot T
P STH
“ E —
2
\1',4 v
=
>
R
2
Ve

References

CBH o i s RSt Bl Sl hll s el L
oy B R e Er ey IR YT AR T

Note Books

Nuwerical Recipes The Art of Scientific Computing, William H. Press, Saul A. Teukolsky,
William T. Vetterling & Brian P. Flannery

Nuwerical Analysis, Richard L. Burden & J. Douglas Faires
Mathematical Methods in the Physical Sciences, Mary L. Boas

http://www.ime.unicamp.br/ wms21 1 -cursao/sites/ defavlt/ files/ material-
didatico/machine-calculation-complex-fourier.pdf

http://www.fftw.org
http://www2.math.vu.se/ figueras/fftw_tutorial/thtw_tutorial.htwml

References

Philipp Grandcl ement, Introduction to spectral methods, 5 place J. Janssen,
92199 Meudon Cedex, France

Philipp Schlatter, Spectral Methods, Computational Fluid Pynamics S¢221 2,
Version 20100201

M. Mortensen. Shenfun - Automating the Spectral Galerkin Method, In Bjern
Helge Skallerud and Helge Ingolf Andersson (ed.), MekIT’17 - Ninth national
conference on Computational Mechanics. International Center for Numerical
Methods in Engineering (CIMNE)., 2017,
http://arxiv.org/absy/1708.03188:

M. Gentleman and 6. Sande, "Fast Fourier transforms-For fun and profit,” 1966
Fall Joint Comput. Conf., AFIPS Proc., vol. 29. Washington, 0. C.: Spartan, 1966,
pp. 563-578.

Thanks!

. MS2 & MS13 at
https:.//www.siam.org/wmeetings/pp18/

. Twitter: @SamarHpe

