FLUPS: a versatile and performant FFT-based library of unbounded Poisson solvers

P. Balty, D.-G. Caprace, P. Chatelain, T. Gillis

Institute of Mechanics, Materials and Civil Engineering

Context

- 3D incompressible Navier-Stokes equations on a Cartesian grid:

 - Usually, 50% of the total computational cost

• Resolution of the **Poisson equation** to impose the incompressibility or recover the stream functions: $\nabla^2 \psi = -\omega$

Torque 2020: Multiphysics simulations of the dynamic and wakes of a floating vertical axis wind turbine, Balty et al.

Context

- 3D incompressible Navier-Stokes equations on a Cartesian grid:

 - Usually, 50% of the total computational cost
- Specific need:
 - Performance on massively parallel systems

- FFT-based method is compatible with most of the BCs and are the fastest on uniform rectangular grid ^[1].

[1] Gholami:2016

• Resolution of the **Poisson equation** to impose the incompressibility or recover the stream functions: $abla^2\psi = -\omega$

Plan for today

- Context Ι.
- II. Methodology
- IV. Results
- V. Conclusion

III. Implementation for massively distributed systems

An unbounded FFT-based Poisson Solver...

• FFT-based method:

- 3D FFT obtained as a succession of 1D FFTs: $\psi_{x,y,z} \to \tilde{\psi}_{x,ky,z} \to \tilde{\psi}_{x,ky,kz} \to \hat{\psi}_{kx,ky,kz}$
- Analytical expression of the Green's functions (provided some regularisation of a given order)
- Different transforms for each boundary condition and data layout

 $\nabla^2 \Psi = -f \quad \longrightarrow \quad \psi = G \star f \quad \longrightarrow \quad \hat{\psi} = \hat{G}\hat{f}$

An unbounded FFT-based Poisson Solver...

• FFT-based method:

Symmetric

$$\nabla^2 \Psi = -f \quad \longrightarrow \quad$$

- 3D FFT obtained as a succession of 1D FFTs: $\psi_{x,y,z} \to \tilde{\psi}_{x,ky,z} \to \tilde{\psi}_{x,ky,kz} \to \hat{\psi}_{kx,ky,kz}$
- Analytical expression of the Green's functions (provided some regularisation of a given order)
- Different transforms for each boundary condition and data layout

$$\psi = G \star f \longrightarrow \hat{\psi} = \hat{G}\hat{f}$$

 $\nabla^2 \Psi = -f \Leftrightarrow \psi = G \star f \Leftrightarrow \hat{\psi} = \hat{G}\hat{f}$ where $\hat{G} = -1/k^2$ is the Green's function in a spectral domain

 \rightarrow 1D Discrete Fourier transform (real to complex or complex to complex)

 \rightarrow 1D Discrete cosine/sine transform depending on the symmetry

... with various boundary conditions

• FFT-based method:

$$\nabla^2 \Psi = -f \quad \longrightarrow \quad$$

– 3D FFT obtained as a succession of 1D FFTs: $\psi_{x,y,z} \rightarrow \tilde{\psi}_{x,ky,z}$

Unbounded and semi-unbounded boundary condition

 $\nabla^2 \Psi = -f \Leftrightarrow \psi$

 $f(x) \to \tilde{f}(k)$

$$\psi = G \star f \longrightarrow \hat{\psi} = \hat{G}\hat{f}$$

$$\rightarrow \tilde{\psi}_{x,ky,kz} \rightarrow \hat{\psi}_{kx,ky,kz}$$

$$= G_{\delta} \star f \Leftrightarrow \hat{\psi} = \hat{G}_{\delta} \hat{f}$$

where \hat{G}_{δ} is the regularized Green's function

 \rightarrow Domain doubling technique^[2,3]:

- f is extended to a domain of 2N with 0 padding
- Discrete Fourier transform on the padded function

[2] Hockney:1988 [3] Caprace : 2021

... with various boundary conditions

• FFT-based method:

$$\psi = G \star f \longrightarrow \hat{\psi} = \hat{G}\hat{f}$$

$$\rightarrow \tilde{\psi}_{x,ky,kz} \rightarrow \hat{\psi}_{kx,ky,kz}$$

$$= G_{\delta} \star f \Leftrightarrow \hat{\psi} = \hat{G}_{\delta} \hat{f}$$

where \hat{G}_{δ} is the regularized Green's function

- f is extended to a domain of 2N with 0 padding
- Discrete Fourier transform on the padded function

- f is extended to a domain of 2N with 0 padding - Discrete sine/cosine transform on the padded function \rightarrow DST/DCT is equivalent to impose symmetric boundary conditions on the new domain

> [2] Hockney:1988 [3] Caprace : 2021

3D FFT on massively parallel systems

- Pencil decomposition
- The topology switches:

- An all-to-all communication problem 3 implementations:
 - All-to-all communication

 - Non-blocking communication with MPI_Datatypes
- Optimizations:

Switching between pencils - 3 implementations

- Simpler implementation using MPI_Ialltoallv
- Implicit barrier
- Transposition of the data (based on FFTW)

- Use persistent MPI_Send_Init, MPI_Recv_Init and MPI_Testsome
- transposition with the communication
- Transposition of the data based on FFTW

Non-blocking with MPI_Datatype MPI_Datatype

- Overlap the data packing and the

- Use non-blocking Send/Recv request
- Avoid manual packing by using **MPI_Datatype**
- Overlap the data packing and the transposition with the communication
- Transposition of the data based₇on FFTW

1D FFTs reordering

- 3D FFT obtained as a succession of 1D FFTs: $\psi_{x,y,z} \to \tilde{\psi}_{x,ky,z} \to \tilde{\psi}_{x,ky,kz} \to \hat{\psi}_{kx,ky,kz}$

Example 1 - (Periodic, Unbounded, Periodic)

Three 1D FFTs have to be performed: Without rendering of the transform $X \rightarrow Y \rightarrow Z$:

1) $\psi_{x,y,z} \to \tilde{\psi}_{k_x,y,z}$ A real-to-complex DFT

2) $\tilde{\psi}_{k_x,y,z} \rightarrow \tilde{\psi}_{k_x,k_y,z}$ A complex-to-complex DFT on an extended and padded domain

3) $\tilde{\psi}_{k_x,k_y,z} \rightarrow \hat{\psi}_{k_x,k_y,k_z}$ A complex-to-complex DFT (on an extended domain)

 \rightarrow FFT in Z costs $2N^3 log(N)$

1D FFTs reordering

- 3D FFT obtained as a succession of 1D FFTs: $\psi_{x,y,z} \rightarrow \tilde{\psi}_{x,ky,z} \rightarrow \tilde{\psi}_{x,ky,kz} \rightarrow \hat{\psi}_{kx,ky,kz}$

Example 1 - (Periodic, Unbounded, Periodic)

Three 1D FFTs have to be performed:

With rendering of the transform $X \rightarrow Z \rightarrow Y$:

- 1) $\psi_{x,y,z} \to \tilde{\psi}_{k_x,y,z}$ A real-to-complex DFT
- 2) $\tilde{\psi}_{k_x,y,z} \rightarrow \tilde{\psi}_{k_x,y,k_z}$ A complex-to-complex DFT
- 3) $\tilde{\psi}_{k_x,y,k_z} \rightarrow \hat{\psi}_{k_x,k_y,k_z}$ A complex-to-complex DFT on an extended domain

 \rightarrow FFT in Z costs $N^3 log(N)$

Applications - Biot-Savart solver: Electromagnetism, Fluid mechanics,...

Methodology

- Forward transform of the rhs: $\omega \rightarrow \hat{\omega}$
- Computation of the curl in the spectral space Ι.
- Multiplication with the spectral Green's function \hat{G}

Testcase

- Compact vortex tube: $\omega(x, y, z) = \left\{ 0, 0, -\omega_z(r) \right\}$

with
$$\omega_{z}(r) = \begin{cases} \frac{1}{2\pi} \frac{2}{R^{2}} \frac{1}{\mathsf{E}_{2}(1)} \exp\left(-\frac{1}{\left(1 - \left(\frac{r^{2}}{R}\right)\right)}\right) & \text{If } r < = R\\ 0 & \text{otherwise} \end{cases}$$

- Cubic domain of size $[0,L]^3$
- X and Y: fully unbounded
- Z: periodic
- Corresponding analytical velocity:

$$\mathbf{u}(x, y, z) = \left\{-\sin(\theta)u_{\theta}(r), \cos(\theta)u_{\theta}(r), 0\right\}$$

with $u_{\theta}(r) = \left\{\frac{1}{2\pi r} \left[1 - \frac{1}{\mathsf{E}_{2}(1)} \left(1 - \left(\frac{r^{2}}{R}\right)\right)\mathsf{E}_{2}\left(\frac{1}{1 - \left(\frac{r^{2}}{R}\right)}\right)\right] \text{ If } r < = R$
otherwise

 $\nabla^2 \mathbf{u} = -\nabla \times \boldsymbol{\omega}$

Infinite norm of the error

[1] Green's function from Chatelain et al., 2010

[2] Green's function from Hejlesen et al., 2013

Results: Comparison with accFFT^[4]

Comparison with accFFT, one of the fastest distributed FFT libraries on CPU^[5]

Testcase

- Weak scaling
- Fully periodic
- Rectangular domain
- unknowns per rank: 256^3

<u>accFFT</u>

- Pencils are aligned in the Z direction
- Does $Z \to Y \to X$
- Opt. Flag: ACCFFT_MEASURE

<u>Flups</u>

- Pencils are aligned in the X direction
- Does $X \to Y \to Z$
- Opt. Flag: FFTW_MEASURE

8 accFFT flups - MPI_Datatype 7 – flups - Non-blocking 6 - [sec] 5 time/transform 4 3 2 0

[4] Gholami:2015 [5]Ayala:2021a

→ At 128 nodes, non-blocking version of flups is 27% faster than accFFT

<u>MeluXina:</u>

- CPU:

- AMD EPYC 7H12
- 200 Gb/s Infiniband HDR - Interconnect:
- *MPI*:
- Transport Layer: UCX 1.13.1

256	32	34
384	32	32

256	32	34
384	32	32

256	32	34
384	32	32

<u>Gustafson's law:</u>

efficiency η is

$$\eta_{P,w} = \frac{1}{1 + (r-1)\beta}$$

where:

- $-r = N/N_0$ is the ratio of the computational resource
- β is the sequential percentage of the program

<u>Gustafson's law:</u>

efficiency η is

$$\eta_{P,w} = \frac{1}{1 + (r-1)\beta}$$

where:

- $-r = N/N_0$ is the ratio of the computational resource
- β is the sequential percentage of the program

Strong scaling - from 128 to 49,152 processes

Time-to-solution

<u>MeluXina:</u>				
- CPU:	AMD EPYC 7H12			
- Interconnect:	200 Gb/s Infiniband HDR			
– MPI:	MPICH 4.1a1			
- Transport Layer:	UCX 1.13.1			

Test case:

- Poisson equation in a fully unbounded domain
- -1281^3 unknowns
- From 1 to 384 nodes

European cluster comparison - Weak scaling test

<u>Time-to-solution</u>

Test case:	Name	Location	CPU	Interconnect	Transport Layer	OSU La
- Poisson equation in a fully unbounded domain	Lumi	Finland	AMD EPYC 7763	200 Gb/s Slingshot-11	Libfabric 15.0.0	2.05
- 96 ³ unknowns per rank	MeluXina	Luxembourg	AMD EPYC 7H12	200 Gb/s Infiniband HDR	ucx 1.13.1	1.45
- From 1 to 128 nodes	Vega	Slovenia	AMD EPYC 7H12	100 Gb/s Infiniband HDR	ucx 1.13.1	1.99

Weak efficiency

Conclusions

Flups offers highly efficient distributed FFT-based Poisson solvers

Methodology

- Handle arbitrary cartesian topology
- 1000 combinations of boundary conditions
- 8 different Green's function
- 2 data layouts

Parallel performance

- Faster time-to-solution compared to accFFT on large FFTs
- Weak and Strong scalability with a parallel percentage $\,pprox\,96\%-98\,\%$
- Scalability on three EuroCC systems

Thanks for your attention!

Any questions?

- Journal on Scientific Computing, vol. 43, no. 1, pp. C31–C60, January 2021
- -<u>https://github.com/vortexlab-uclouvain/flups</u>

-*FLUPS* - a flexible and performant massively parallel Fourier transform library, Balty et al., IEEE - Transactions on Parallel and Distributed Systems, 2023 (*forthcoming*)

-FLUPS - A Fourier-based Library of Unbounded Poisson Solvers, Caprace et al., SIAM

