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Context

- 3D incompressible Navier-Stokes equations on a Cartesian grid: 

‣ Resolution of the Poisson equation to impose the incompressibility or recover the stream functions:  

‣ Usually, 50% of the total computational cost

∇2ψ = − ω

Torque 2020: Multiphysics simulations of the dynamic and 
wakes of a floating vertical axis wind turbine, Balty et al.
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Context

- 3D incompressible Navier-Stokes equations on a Cartesian grid: 

‣ Resolution of the Poisson equation to impose the incompressibility or recover the stream functions:  

‣ Usually, 50% of the total computational cost

∇2ψ = − ω

- Specific need:

Periodic Symmetric Unbounded Semi-unbounded

- FFT-based method is compatible with most of the BCs and are the fastest on uniform rectangular grid [1]. 

[1] Gholami:2016

‣ Flexibility in the data layout: cell-centered or node-centered

‣ Performance on massively parallel systems

‣  Various boundary conditions (BC):
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• FFT-based method: 

- 3D FFT obtained as a succession of 1D FFTs:   
- Analytical expression of the Green’s functions (provided some regularisation of a given order)  
- Different transforms for each boundary condition and data layout

ψx,y,z → ψ̃x,ky,z → ψ̃x,ky,kz → ψ̂kx,ky,kz
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An unbounded FFT-based Poisson Solver…

ψ = G ⋆ f∇2Ψ = − f ψ̂ = Ĝ ̂f
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An unbounded FFT-based Poisson Solver…

ψ = G ⋆ f∇2Ψ = − f ψ̂ = Ĝ ̂f

Periodic or symmetric boundary condition

Periodic

Symmetric

∇2Ψ = − f ⇔ ψ = G ⋆ f ⇔ ψ̂ = Ĝ ̂f
where  is the Green’s function in a spectral domainĜ = − 1/k2

 1D Discrete Fourier transform  (real to complex or complex to complex)→

 1D Discrete cosine/sine transform depending on the symmetry→

f(x) → f̃(k)

f(x) → f̃(k)



Unbounded and semi-unbounded boundary condition

• FFT-based method: 

- 3D FFT obtained as a succession of 1D FFTs: ψx,y,z → ψ̃x,ky,z → ψ̃x,ky,kz → ψ̂kx,ky,kz
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… with various boundary conditions

ψ = G ⋆ f∇2Ψ = − f ψ̂ = Ĝ ̂f

∇2Ψ = − f ⇔ ψ = Gδ ⋆ f ⇔ ψ̂ = Ĝδ
̂f where  is the regularized Green’s functionĜδ

f(x) → f̃(k)

Unbounded

 Domain doubling technique[2,3]: →

-  is extended to a domain of 2N with 0 padding 
- Discrete Fourier transform on the padded function

f

L0 2L

[2] Hockney:1988 

[3] Caprace : 2021
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… with various boundary conditions

ψ = G ⋆ f∇2Ψ = − f ψ̂ = Ĝ ̂f

∇2Ψ = − f ⇔ ψ = Gδ ⋆ f ⇔ ψ̂ = Ĝδ
̂f where  is the regularized Green’s functionĜδ

f(x) → f̃(k)

Unbounded

 Domain doubling technique[2,3]: →

-  is extended to a domain of 2N with 0 padding 
- Discrete Fourier transform on the padded function

f

L0 2L

f(x) → f̃(k)

Very convenient for various problems: 
-Inflow - outflow 
- Wall bounded (wake in ground effects)

Semi-unbounded

Symmetric boundary conditions 

0 L 2L

-  is extended to a domain of 2N with 0 padding 
- Discrete sine/cosine transform on the padded function 

DST/DCT is equivalent to impose symmetric 
boundary conditions on the new domain 

f

→

[2] Hockney:1988 

[3] Caprace : 2021



• An all-to-all communication problem - 3 implementations: 
- All-to-all communication 
- Non-blocking communication with manual packing and un packing  
- Non-blocking communication with MPI_Datatypes 

• Optimizations: 
- Order of the 1D FFTs determined to reduce the memory footprint and the computational cost  
- Creation of sub-communicators to reduce the memory footprint on large partition
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3D FFT on massively parallel systems

X
Y

Z

X

Y

X

Y

X
Y

Z Communication

Shuffle

Copy back

copy to buffer

12

34

24 13

68 57

Source topology

Destination topology

Distributed 1D FFTs require:  

- All data on the same processor must be 
aligned in the direction of the FFT 

- Unit-stride in memory 

• The topology switches: 
• Pencil decomposition
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Switching between pencils - 3 implementations 

All-to-all Non-blocking with manual packing Non-blocking with MPI_Datatype

- Simpler implementation using 
MPI_Ialltoallv 

- Implicit barrier  

- Transposition of the data (based 
on FFTW)

- Use persistent MPI_Send_Init, 
MPI_Recv_Init and MPI_Testsome 

- Overlap the data packing and the 
transposition with the 
communication 

- Transposition of the data based on 
FFTW

- Use non-blocking Send/Recv 
request 

- Avoid manual packing by using 
MPI_Datatype 

- Overlap the data packing and the 
transposition with the 
communication 

- Transposition of the data based on 
FFTW 



- 3D FFT obtained as a succession of 1D FFTs: ψx,y,z → ψ̃x,ky,z → ψ̃x,ky,kz → ψ̂kx,ky,kz
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1D FFTs reordering 

Example 1 - (Periodic, Unbounded, Periodic)

Three 1D FFTs have to be performed: 

Y
Z

X

X
Y

Z

Without rendering of the transform : 
1)          A real-to-complex DFT  
2)       A complex-to-complex DFT on an extended and padded domain  
3)    A complex-to-complex DFT (on an extended domain)

X → Y → Z
ψx,y,z → ψ̃kx,y,z
ψ̃kx,y,z → ψ̃kx,ky,z
ψ̃kx,ky,z → ψ̂kx,ky,kz

 FFT in  costs  → Z 2N3log(N)
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1D FFTs reordering 

Example 1 - (Periodic, Unbounded, Periodic)

Three 1D FFTs have to be performed: 

Y
Z

X

X
Y

Z

With rendering of the transform : 
1)          A real-to-complex DFT  
2)       A complex-to-complex DFT 
3)    A complex-to-complex DFT on an extended domain

X → Z → Y
ψx,y,z → ψ̃kx,y,z
ψ̃kx,y,z → ψ̃kx,y,kz

ψ̃kx,y,kz
→ ψ̂kx,ky,kz

 FFT in  costs → Z N3log(N)



10

Applications - Biot-Savart solver: Electromagnetism, Fluid mechanics,…

∇2u = − ∇ × ωMethodology 
I. Forward transform of the rhs:  

II. Computation of the curl in the spectral space 

III.  Multiplication with the spectral Green’s function 

ω → ω̂

Ĝ

1
2πr

1 − 1
E2(1) (1 − ( r

R
2)) E2

1
1 − ( r

R
2)with uθ(r) =

1
2πr

{
If  r < = R

otherwise

- Corresponding analytical velocity:  

u(x, y, z) = {−sin(θ)uθ(r), cos(θ)uθ(r), 0}

Testcase  
- Compact vortex tube: ω(x, y, z) = {0,0, − ωz(r)}

1
2π

2
R2

1
E2(1) exp − 1

(1 − ( r
R

2))with ωz(r) =
0{

If  r < = R

otherwise

- Cubic domain of size   

-  and : fully unbounded  

- : periodic

[0,L]3

X Y
Z

E∞ = sup
x,y,z

{ |u(x, y, z) − uref(x, y, z) |}

Infinite norm of the error
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Results: Comparison with accFFT[4]

Comparison with accFFT, one of the fastest  distributed FFT libraries on CPU[5]  

Testcase  
- Weak scaling  

- Fully periodic  

- Rectangular domain 

- unknowns per rank: 2563

accFFT 

- Pencils are aligned in the  direction  

- Does  
- Opt. Flag: ACCFFT_MEASURE

Z
Z → Y → X

Flups 

- Pencils are aligned in the  direction  

- Does  
- Opt. Flag: FFTW_MEASURE

X
X → Y → Z

 → At 128 nodes, non-blocking version of flups is 27% faster than accFFT

Px Py Pz
1 1 8 16
2 1 16 16
8 1 32 32

32 1 64 64
128 1 128 128

MeluXina:  
- CPU:                           AMD EPYC 7H12 
- Interconnect:         200 Gb/s Infiniband HDR  
- MPI:                            MPICH 4.1a1 
- Transport Layer:   UCX 1.13.1

[4] Gholami:2015 

[5]Ayala:2021a



Time-to-solution

Nodes Px Py Pz
1 4 4 8
2 4 8 8
4 8 8 8
8 8 8 16

16 8 16 16
32 16 16 16
64 16 16 32

128 16 32 32
256 32 32 32
384 32 32 48

Process distribution
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- MPI:                            MPICH 4.1a1 
- Transport Layer:   UCX 1.13.1

Weak scaling - from 128 to 49,152 processes

Test case:  
- Poisson equation in a fully unbounded domain 

-  unknowns per rank  
- From 1 to 384 nodes

963
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MeluXina:  
- CPU:                           AMD EPYC 7H12 
- Interconnect:         200 Gb/s Infiniband HDR  
- MPI:                            MPICH 4.1a1 
- Transport Layer:   UCX 1.13.1

Weak scaling - from 128 to 49,152 processes

Fixed computational cost: ffts, 
mult, copy of the rhs 

Time-to-solution:  

MPI_Datatype  all to all   Non-Blocking> >

Time-to-solution: all-to-all  Non-Blocking  MPI_Datatype> >

Unbounded domain:  

cost of the topology switch increases

Manual packing hidden 

in the communication

Test case:  
- Poisson equation in a fully unbounded domain 

-  unknowns per rank  
- From 1 to 384 nodes

963



Weak efficiency
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Weak scaling - from 128 to 49,152 processes

Gustafson’s law:  

efficiency  is 

   

where: 

-  is the ratio of the 
computational resource  

-   is the sequential percentage 
of the program 

η

ηP,w = 1
1 + (r − 1)β

r = N/N0

β

β = 0 %

β = 0.2 %

β = 0.5 %

β = 1 %
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Weak scaling - from 128 to 49,152 processes

Gustafson’s law:  

efficiency  is 

   

where: 

-  is the ratio of the 
computational resource  

-   is the sequential percentage 
of the program 

η

ηP,w = 1
1 + (r − 1)β

r = N/N0

β

(Resources)     x 384  
(Problem size) x 384

(Time-to-solution) x 1.55

(Time-to-solution) x 2.8

β = 0 %

β = 0.2 %

β = 0.5 %

β = 1 %
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Strong scaling - from 128 to 49,152 processes

MeluXina:  
- CPU:                           AMD EPYC 7H12 
- Interconnect:         200 Gb/s Infiniband HDR  
- MPI:                            MPICH 4.1a1 
- Transport Layer:   UCX 1.13.1

Test case:  
- Poisson equation in a fully unbounded domain 

-  unknowns  
- From 1 to 384 nodes

12813

Time-to-solution Speed up
(Resources)     x 384  
(Problem size) x 1

Sp = 260

Sp = 190

Sp = 148
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European cluster comparison - Weak scaling test

Time-to-solution Weak efficiency

Test case:  
- Poisson equation in a fully unbounded domain 

-  unknowns per rank  
- From 1 to 128 nodes

963

Name Location CPU Interconnect Transport Layer OSU Latency

Lumi Finland AMD EPYC 7763 200 Gb/s Slingshot-11 Libfabric 15.0.0 2.05 us
MeluXina Luxembourg AMD EPYC 7H12 200 Gb/s Infiniband HDR ucx 1.13.1 1.45 us

Vega Slovenia AMD EPYC 7H12 100 Gb/s Infiniband HDR ucx 1.13.1 1.99 us
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Conclusions

Flups offers highly efficient distributed FFT-based Poisson solvers 

Methodology 
- Handle arbitrary cartesian topology 
- 1000 combinations of boundary conditions  
- 8 different Green’s function  
- 2 data layouts  

Parallel performance 
- Faster time-to-solution compared to accFFT on large FFTs 

- Weak and Strong scalability with a parallel percentage   
- Scalability on three EuroCC systems

≈ 96% − 98 %



Thanks for your attention! 

Any questions? 

-FLUPS - a flexible and performant massively parallel Fourier transform library, Balty 
et al., IEEE - Transactions on Parallel and Distributed Systems, 2023 (forthcoming) 

-FLUPS - A Fourier-based Library of Unbounded Poisson Solvers,  Caprace et al., SIAM 
Journal on Scientific Computing, vol. 43, no. 1, pp. C31–C60, January 2021 

-https://github.com/vortexlab-uclouvain/flups

https://github.com/vortexlab-uclouvain/flups

