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Motivation

General m-sparse FFT algorithms do not use additional a priori known
information about the signal structure:

Iwen (2010, deterministic): O
(
m2 log4 N

)
Iwen (2013, randomized w.h.p.): O

(
m log4 N

)
,

Plonka, Wannenwetsch, Cuyt, Lee (2018): O
(
m2 logN

)
.

FFT algorithms for signals with short support of length m cannot be
generalized to two or more support intervals:

Plonka, Wannenwetsch (2016, 2017): O (m logN), O
(
m logm log N

m

)
,

Bittens (2017): O
(
m logm log2 N

m

)
.

Aim: Find a deterministic FFT algorithm for 2π-periodic frequency sparse
functions with more general structures:

Multiple B-length blocks of frequencies,
Frequencies generated by evaluating n polynomials of degree d at B
points.
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Preliminaries

Block Sparse Functions

Consider 2π-periodic f with bandwidth N and energetic frequencies
contained in n blocks of length B ,

{ωj , ωj + 1, . . . , ωj + B − 1} ⊂
{
−
⌈
N
2

⌉
+ 1, . . . ,

⌊
N
2

⌋}
.

f is block sparse and of the form

f : [0, 2π]→ C, f (x) =
n∑

j=1

B−1∑
k=0

cωj+kei(ωj+k)x

with finite Fourier transform c = (cω)ω∈{−dN2 e+1,...,bN2 c}.
Energetic Frequency: ω with cω 6= 0.

Example (n = 2, B = 3)

c = (0, . . . , 0, cω1 , cω1+1, cω1+2, 0, . . . , 0, cω2 , cω2+1, cω2+2, 0, . . . , 0)
T
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Preliminaries

Discrete Fourier Transform (DFT)

Definition (Discrete Fourier Transform)

Let A = (A(j))M−1j=0 ∈ CM . Define Â :=
(
Â(ω)

)bM2 c
ω=−dM2 e+1

∈ CM by

Â(ω) := 1
M ·

M−1∑
j=0

e
−2πijω

M · A(j).

Runtime of the fast DFT: O(M logM).

Definition (Vector of Equidistant Samples)

For f : [0, 2π]→ C and M ∈ N define

AM = (AM(j))M−1j=0 :=
(
f
(
2πj
M

))M−1
j=0

.
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Decomposition

Main Idea - Decomposition

AN =
(
f
(
2πj
N

))N−1
j=0

.

n frequency blocks of length B ⇒ ÂN is nB-sparse,

ÂN(ω) =

cω if ω ∈
n⋃

j=1
{ωj , ωj + 1, . . . , ωj + B − 1},

0 otherwise.

General sparse FFT algorithms only efficient for very sparse functions.

Approach: Decompose input function into sparser functions and apply
sparse FFT algorithm to all of them.
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Decomposition

Restriction to the Frequencies Congruent to ν

Definition (Restriction)

Let f be block sparse with n blocks of length B , u ≥ B , ν ∈ {0, . . . , u− 1}.

ÂνN(ω) :=

{
ÂN(ω) if ω ≡ ν mod u,

0 otherwise.

Âν
N : restriction of ÂN to frequencies ω ≡ ν mod u.

Âν
N is at most n-sparse.

Applying sparse FFT to Âν
N is fast.

Restriction to residues agrees well with GFFT.
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Decomposition

Block Sparse Case

Let f be 1-block sparse.
f has frequency support S := {ω1, ω1 + 1, . . . , ω1 + B − 1}.
Choose u ≥ B . Then |{ω ≡ ν mod u : ω ∈ S}| ≤ 1 for all
ν = 0, . . . , u − 1.
There is at most one energetic frequency congruent to ν modulo u for
each residue ν.

Let f be n-block sparse.

f has frequency support S :=
n⋃

j=1
{ωj , ωj + 1, . . . , ωj + B − 1}.

Choose u ≥ B . Then |{ω ≡ ν mod u : ω ∈ S}| ≤ n for all
ν = 0, . . . , u − 1.
There are at most n energetic frequencies congruent to ν modulo u
for each residue ν.

Sina Bittens Implementation of Sparse FFT with Structured Sparsity 6 / 15



Decomposition

Block Sparse Case

Let f be 1-block sparse.
f has frequency support S := {ω1, ω1 + 1, . . . , ω1 + B − 1}.
Choose u ≥ B . Then |{ω ≡ ν mod u : ω ∈ S}| ≤ 1 for all
ν = 0, . . . , u − 1.
There is at most one energetic frequency congruent to ν modulo u for
each residue ν.

Let f be n-block sparse.

f has frequency support S :=
n⋃

j=1
{ωj , ωj + 1, . . . , ωj + B − 1}.

Choose u ≥ B . Then |{ω ≡ ν mod u : ω ∈ S}| ≤ n for all
ν = 0, . . . , u − 1.
There are at most n energetic frequencies congruent to ν modulo u
for each residue ν.

Sina Bittens Implementation of Sparse FFT with Structured Sparsity 6 / 15



Decomposition

Example: N = 15, n = 2, B = u = 3 (∗: nonzero entries)

ÂN =



0
0
0
∗
∗
∗
0
0
0
0
0
∗
∗
∗
0



→ Â0
N

ω≡0 mod 3
=



0
0
0
∗
0
0
0
0
0
0
0
0
∗
0
0



, Â1
N

ω≡1 mod 3
=



0
0
0
0
∗
0
0
0
0
0
0
0
0
∗
0



, Â2
N

ω≡2 mod 3
=



0
0
0
0
0
∗
0
0
0
0
0
∗
0
0
0
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SFFT Algorithm for Block Sparse Functions

SFFT Algorithm for Block Sparse Functions (FAST) I

Choose u ≥ B as a power of 2.
Apply sparse FFT algorithm to all u at most n-sparse restrictions Âν

N .

Use the residue ν modulo u for the sparse FFT frequency
reconstruction as well.
Required samples using GFFT:

Ask tlu =
(
f
(

2πj
sk tlu

))sk tlu−1
j=0

for all k and l

tl : odd primes s.t. N
nu ≤

∏L
l=1 tl

sk : primes s.t. all ω ≡ ν mod u can be uniquely recovered from
mod sk , t1, . . . , tL for more than K/2 sk .

Every energetic frequency found for exactly one residue ν modulo u.
Accurate coefficient estimates guaranteed.
Choose the nB most energetic returned frequencies.
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SFFT Algorithm for Block Sparse Functions

SFFT Algorithm for Block Sparse Functions (FAST) II

Input: Sparse function f with n blocks of length B and bandwidth N.
1: u = 2blog2 Bc+1, t1 < · · · < tL minimal, prime s.t. N

nu ≤
∏L

l=1 tl ,
s1 > max(n, tL), K = 2nblogs1

N
u c+ 1, s1 < · · · < sK minimal, prime.

2: for k = 1, . . . ,K , l = 0, . . . , L do

3: Compute Âsk tlu = DFT
(
f
(

2πj
sk tlu

))sk tlu−1
j=0

.

4: end for
5: for ν = 0, . . . , u − 1 do
6: Apply n-sparse GFFT to Âν

N to obtain
Sν := {ων1 , . . . , ωνn} and coefficient estimates xων1 , . . . , xωνn .

7: end for
Output: Choose the nB frequencies from

⋃u−1
ν=0 S

ν with largest magnitude
coefficient estimates.

Implementations available in Matlab and C++.
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SFFT Algorithm for Block Sparse Functions

Runtime and Sampling Complexity

Theorem (B., Iwen, Zhang, 2018)

Let f ∈ L2([0, 2π]) be block sparse with n blocks of length B . The FAST
algorithm returns an nB-sparse vector x ∈ CN of accurate Fourier
coefficient estimates with runtime

O
(
B·n2·logB log4 N

log2 n

)
and sampling complexity

O
(
B·n2·log4 N

log2 n

)
.

GFFT for nB-sparse functions:

runtime: O
(
(nB)2 log6 N

log2(nB)

)
; required samples: O

(
(nB)2 log5 N

log2(nB)

)
.
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Numerical Experiments

Runtime - Varying the Block Length

10−3

10−2

10−1

100

101

102

4 8 16 32 64 128 256 512 1024 2048

R
un

tim
e
[s
]

Block Length B

GFFT
FAST
FFTW
sFFT 2.0
FAST (rand.)

Runtimes of deterministic FFT algorithms for N = 226 and n = 3 blocks.
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Numerical Experiments

Runtime - Varying the Bandwidth
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Runtimes of deterministic FFT algorithms for n = 2 blocks of length B = 64.
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Numerical Experiments

Robustness to Noise
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Reconstruction errors of deterministic FFT algorithms for N = 222 and n = 3
blocks of length B = 24.
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Further Results

Generalization of the Technique I

Can more general structures guarantee similar sparsities?
Block {ωj , ωj + 1, . . . , ωj + B − 1} generated by evaluating
Pj(x) = x + ωj at 0, 1, . . . ,B − 1.

Generate energetic frequencies by evaluating n polynomials of degree
d at B points.
Are the restrictions Âν

N to the frequencies congruent to ν modulo
u > B at most nd-sparse?

Problems:
Âν
N is at most nd-sparse for ν mod u if and only if none of the

generating polynomials is constant modulo u.
Knowledge about the polynomial coefficients is hard to obtain.
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Further Results

Generalization of the Technique II

Choose primes u1, . . . , uM s.t. for more than half of them all
restrictions are at most nd-sparse.
Guaranteed by Chinese Remainder Theorem; related idea used in
GFFT.
Employ median arguments to find correct frequencies and coefficient
estimates.

Accurate coefficient estimates guaranteed.

Required samples: Ask tlum =
(
f
(

2πj
sk tlu

))sk tlum−1
j=0

for all k, l and m.

Runtime: O
(
Bd2n3 log5 N

log2(dn)

)
.

Sampling complexity: O
(

Bd2n3 log5 N
logB log2(dn)

)
Generalized technique efficient if B � d2n logN.
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Main Idea of GFFT

Recovers the most energetic frequencies and accurate estimates for their
Fourier coefficients of an m-sparse 2π-periodic function.

Find smallest primes t1, . . . , tL and s1, . . . , sK ≥ m s.t. unique
recovery of the frequencies from their residues modulo sk , t1, . . . , tL is
possible by the Chinese Remainder Theorem for all 1 ≤ k ≤ K .

Residues found by considering entries of Âsk tl for all l .

Fourier coefficients found accurately from Âsk tL(ω mod sktL) = cω.

Required samples: Ask tl =
(
f
(
2πj
sk tl

))sk tl−1
j=0

for all k and l .

Runtime for m-sparse functions: O
(
m2 log6 N
log2 m

)
.

Sampling complexity for m-sparse functions: O
(
m2 log5 N
log2 m

)
.
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GFFT Algorithm for Sparse Functions

Input: B-sparse function f with bandwidth N.
1: t1 < · · · < tL minimal, prime s.t. N

B ≤
∏L

l=1 tl , s1 > max(B, tL),
K = 2Bblogs1 Nc+ 1, s1 < · · · < sK minimal, prime.

2: for k = 1, . . . ,K , l = 0, . . . , L do

3: Compute Âsk tl = DFT
(
f
(
2πj
sk tl

))sk tl−1
j=0

.

4: for k = 1, . . . ,K do
5: for every residue h mod sk do
6: Find residues modulo t1, . . . , tL of ω ≡ h mod sk from Âsk tl .
7: Reconstruct ω from its residues.
8: for each ω found more than K/2 times do
9: cω ← median

{
Âsk tl (ω mod sktl) : k = 1, . . . ,K , l = 1, . . . , L

}
Output: The B frequencies with largest magnitude coefficient estimates.
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