
Implementation of Sparse FFT with Structured
Sparsity

Sina Bittens1, Mark Iwen2, Ruochuan Zhang2

1University of Göttingen, Institute for Numerical and Applied Mathematics

2Michigan State University, Dept. of Mathematics, and Dept. of CMSE

CSE19
Spokane, Washington

March 1, 2019

Motivation

General m-sparse FFT algorithms do not use additional a priori known
information about the signal structure:

Iwen (2010, deterministic): O
(
m2 log4 N

)
Iwen (2013, randomized w.h.p.): O

(
m log4 N

)
,

Plonka, Wannenwetsch, Cuyt, Lee (2018): O
(
m2 logN

)
.

FFT algorithms for signals with short support of length m cannot be
generalized to two or more support intervals:

Plonka, Wannenwetsch (2016, 2017): O (m logN), O
(
m logm log N

m

)
,

Bittens (2017): O
(
m logm log2 N

m

)
.

Aim: Find a deterministic FFT algorithm for 2π-periodic frequency sparse
functions with more general structures:

Multiple B-length blocks of frequencies,
Frequencies generated by evaluating n polynomials of degree d at B
points.

Sina Bittens Implementation of Sparse FFT with Structured Sparsity 1 / 15

Motivation

General m-sparse FFT algorithms do not use additional a priori known
information about the signal structure:

Iwen (2010, deterministic): O
(
m2 log4 N

)
Iwen (2013, randomized w.h.p.): O

(
m log4 N

)
,

Plonka, Wannenwetsch, Cuyt, Lee (2018): O
(
m2 logN

)
.

FFT algorithms for signals with short support of length m cannot be
generalized to two or more support intervals:

Plonka, Wannenwetsch (2016, 2017): O (m logN), O
(
m logm log N

m

)
,

Bittens (2017): O
(
m logm log2 N

m

)
.

Aim: Find a deterministic FFT algorithm for 2π-periodic frequency sparse
functions with more general structures:

Multiple B-length blocks of frequencies,
Frequencies generated by evaluating n polynomials of degree d at B
points.
Sina Bittens Implementation of Sparse FFT with Structured Sparsity 1 / 15

Contents

1 Preliminaries

2 Decomposition

3 SFFT Algorithm for Block Sparse Functions

4 Numerical Experiments

5 Further Results

Preliminaries

Block Sparse Functions

Consider 2π-periodic f with bandwidth N and energetic frequencies
contained in n blocks of length B ,

{ωj , ωj + 1, . . . , ωj + B − 1} ⊂
{
−
⌈
N
2

⌉
+ 1, . . . ,

⌊
N
2

⌋}
.

f is block sparse and of the form

f : [0, 2π]→ C, f (x) =
n∑

j=1

B−1∑
k=0

cωj+kei(ωj+k)x

with finite Fourier transform c = (cω)ω∈{−dN2 e+1,...,bN2 c}.
Energetic Frequency: ω with cω 6= 0.

Example (n = 2, B = 3)

c = (0, . . . , 0, cω1 , cω1+1, cω1+2, 0, . . . , 0, cω2 , cω2+1, cω2+2, 0, . . . , 0)
T

Sina Bittens Implementation of Sparse FFT with Structured Sparsity 2 / 15

Preliminaries

Block Sparse Functions

Consider 2π-periodic f with bandwidth N and energetic frequencies
contained in n blocks of length B ,

{ωj , ωj + 1, . . . , ωj + B − 1} ⊂
{
−
⌈
N
2

⌉
+ 1, . . . ,

⌊
N
2

⌋}
.

f is block sparse and of the form

f : [0, 2π]→ C, f (x) =
n∑

j=1

B−1∑
k=0

cωj+kei(ωj+k)x

with finite Fourier transform c = (cω)ω∈{−dN2 e+1,...,bN2 c}.
Energetic Frequency: ω with cω 6= 0.

Example (n = 2, B = 3)

c = (0, . . . , 0, cω1 , cω1+1, cω1+2, 0, . . . , 0, cω2 , cω2+1, cω2+2, 0, . . . , 0)
T

Sina Bittens Implementation of Sparse FFT with Structured Sparsity 2 / 15

Preliminaries

Block Sparse Functions

Consider 2π-periodic f with bandwidth N and energetic frequencies
contained in n blocks of length B ,

{ωj , ωj + 1, . . . , ωj + B − 1} ⊂
{
−
⌈
N
2

⌉
+ 1, . . . ,

⌊
N
2

⌋}
.

f is block sparse and of the form

f : [0, 2π]→ C, f (x) =
n∑

j=1

B−1∑
k=0

cωj+kei(ωj+k)x

with finite Fourier transform c = (cω)ω∈{−dN2 e+1,...,bN2 c}.
Energetic Frequency: ω with cω 6= 0.

Example (n = 2, B = 3)

c = (0, . . . , 0, cω1 , cω1+1, cω1+2, 0, . . . , 0, cω2 , cω2+1, cω2+2, 0, . . . , 0)
T

Sina Bittens Implementation of Sparse FFT with Structured Sparsity 2 / 15

Preliminaries

Discrete Fourier Transform (DFT)

Definition (Discrete Fourier Transform)

Let A = (A(j))M−1j=0 ∈ CM . Define Â :=
(
Â(ω)

)bM2 c
ω=−dM2 e+1

∈ CM by

Â(ω) := 1
M ·

M−1∑
j=0

e
−2πijω

M · A(j).

Runtime of the fast DFT: O(M logM).

Definition (Vector of Equidistant Samples)

For f : [0, 2π]→ C and M ∈ N define

AM = (AM(j))M−1j=0 :=
(
f
(
2πj
M

))M−1
j=0

.

Sina Bittens Implementation of Sparse FFT with Structured Sparsity 3 / 15

Preliminaries

Discrete Fourier Transform (DFT)

Definition (Discrete Fourier Transform)

Let A = (A(j))M−1j=0 ∈ CM . Define Â :=
(
Â(ω)

)bM2 c
ω=−dM2 e+1

∈ CM by

Â(ω) := 1
M ·

M−1∑
j=0

e
−2πijω

M · A(j).

Runtime of the fast DFT: O(M logM).

Definition (Vector of Equidistant Samples)

For f : [0, 2π]→ C and M ∈ N define

AM = (AM(j))M−1j=0 :=
(
f
(
2πj
M

))M−1
j=0

.

Sina Bittens Implementation of Sparse FFT with Structured Sparsity 3 / 15

Decomposition

Main Idea - Decomposition

AN =
(
f
(
2πj
N

))N−1
j=0

.

n frequency blocks of length B ⇒ ÂN is nB-sparse,

ÂN(ω) =

cω if ω ∈
n⋃

j=1
{ωj , ωj + 1, . . . , ωj + B − 1},

0 otherwise.

General sparse FFT algorithms only efficient for very sparse functions.

Approach: Decompose input function into sparser functions and apply
sparse FFT algorithm to all of them.

Sina Bittens Implementation of Sparse FFT with Structured Sparsity 4 / 15

Decomposition

Main Idea - Decomposition

AN =
(
f
(
2πj
N

))N−1
j=0

.

n frequency blocks of length B ⇒ ÂN is nB-sparse,

ÂN(ω) =

cω if ω ∈
n⋃

j=1
{ωj , ωj + 1, . . . , ωj + B − 1},

0 otherwise.

General sparse FFT algorithms only efficient for very sparse functions.

Approach: Decompose input function into sparser functions and apply
sparse FFT algorithm to all of them.

Sina Bittens Implementation of Sparse FFT with Structured Sparsity 4 / 15

Decomposition

Restriction to the Frequencies Congruent to ν

Definition (Restriction)

Let f be block sparse with n blocks of length B , u ≥ B , ν ∈ {0, . . . , u− 1}.

ÂνN(ω) :=

{
ÂN(ω) if ω ≡ ν mod u,

0 otherwise.

Âν
N : restriction of ÂN to frequencies ω ≡ ν mod u.

Âν
N is at most n-sparse.

Applying sparse FFT to Âν
N is fast.

Restriction to residues agrees well with GFFT.

Sina Bittens Implementation of Sparse FFT with Structured Sparsity 5 / 15

Decomposition

Restriction to the Frequencies Congruent to ν

Definition (Restriction)

Let f be block sparse with n blocks of length B , u ≥ B , ν ∈ {0, . . . , u− 1}.

ÂνN(ω) :=

{
ÂN(ω) if ω ≡ ν mod u,

0 otherwise.

Âν
N : restriction of ÂN to frequencies ω ≡ ν mod u.

Âν
N is at most n-sparse.

Applying sparse FFT to Âν
N is fast.

Restriction to residues agrees well with GFFT.

Sina Bittens Implementation of Sparse FFT with Structured Sparsity 5 / 15

Decomposition

Block Sparse Case

Let f be 1-block sparse.
f has frequency support S := {ω1, ω1 + 1, . . . , ω1 + B − 1}.
Choose u ≥ B . Then |{ω ≡ ν mod u : ω ∈ S}| ≤ 1 for all
ν = 0, . . . , u − 1.
There is at most one energetic frequency congruent to ν modulo u for
each residue ν.

Let f be n-block sparse.

f has frequency support S :=
n⋃

j=1
{ωj , ωj + 1, . . . , ωj + B − 1}.

Choose u ≥ B . Then |{ω ≡ ν mod u : ω ∈ S}| ≤ n for all
ν = 0, . . . , u − 1.
There are at most n energetic frequencies congruent to ν modulo u
for each residue ν.

Sina Bittens Implementation of Sparse FFT with Structured Sparsity 6 / 15

Decomposition

Block Sparse Case

Let f be 1-block sparse.
f has frequency support S := {ω1, ω1 + 1, . . . , ω1 + B − 1}.
Choose u ≥ B . Then |{ω ≡ ν mod u : ω ∈ S}| ≤ 1 for all
ν = 0, . . . , u − 1.
There is at most one energetic frequency congruent to ν modulo u for
each residue ν.

Let f be n-block sparse.

f has frequency support S :=
n⋃

j=1
{ωj , ωj + 1, . . . , ωj + B − 1}.

Choose u ≥ B . Then |{ω ≡ ν mod u : ω ∈ S}| ≤ n for all
ν = 0, . . . , u − 1.
There are at most n energetic frequencies congruent to ν modulo u
for each residue ν.

Sina Bittens Implementation of Sparse FFT with Structured Sparsity 6 / 15

Decomposition

Example: N = 15, n = 2, B = u = 3 (∗: nonzero entries)

ÂN =

0
0
0
∗
∗
∗
0
0
0
0
0
∗
∗
∗
0

→ Â0
N

ω≡0 mod 3
=

0
0
0
∗
0
0
0
0
0
0
0
0
∗
0
0

, Â1
N

ω≡1 mod 3
=

0
0
0
0
∗
0
0
0
0
0
0
0
0
∗
0

, Â2
N

ω≡2 mod 3
=

0
0
0
0
0
∗
0
0
0
0
0
∗
0
0
0

Sina Bittens Implementation of Sparse FFT with Structured Sparsity 7 / 15

Decomposition

Example: N = 15, n = 2, B = u = 3 (∗: nonzero entries)

ÂN =

0
0
0
∗
∗
∗
0
0
0
0
0
∗
∗
∗
0

→ Â0
N

ω≡0 mod 3
=

0
0
0
∗
0
0
0
0
0
0
0
0
∗
0
0

,

Â1
N

ω≡1 mod 3
=

0
0
0
0
∗
0
0
0
0
0
0
0
0
∗
0

, Â2
N

ω≡2 mod 3
=

0
0
0
0
0
∗
0
0
0
0
0
∗
0
0
0

Sina Bittens Implementation of Sparse FFT with Structured Sparsity 7 / 15

Decomposition

Example: N = 15, n = 2, B = u = 3 (∗: nonzero entries)

ÂN =

0
0
0
∗
∗
∗
0
0
0
0
0
∗
∗
∗
0

→ Â0
N

ω≡0 mod 3
=

0
0
0
∗
0
0
0
0
0
0
0
0
∗
0
0

, Â1
N

ω≡1 mod 3
=

0
0
0
0
∗
0
0
0
0
0
0
0
0
∗
0

, Â2
N

ω≡2 mod 3
=

0
0
0
0
0
∗
0
0
0
0
0
∗
0
0
0

Sina Bittens Implementation of Sparse FFT with Structured Sparsity 7 / 15

SFFT Algorithm for Block Sparse Functions

SFFT Algorithm for Block Sparse Functions (FAST) I

Choose u ≥ B as a power of 2.
Apply sparse FFT algorithm to all u at most n-sparse restrictions Âν

N .

Use the residue ν modulo u for the sparse FFT frequency
reconstruction as well.
Required samples using GFFT:

Ask tlu =
(
f
(

2πj
sk tlu

))sk tlu−1
j=0

for all k and l

tl : odd primes s.t. N
nu ≤

∏L
l=1 tl

sk : primes s.t. all ω ≡ ν mod u can be uniquely recovered from
mod sk , t1, . . . , tL for more than K/2 sk .

Every energetic frequency found for exactly one residue ν modulo u.
Accurate coefficient estimates guaranteed.
Choose the nB most energetic returned frequencies.

Sina Bittens Implementation of Sparse FFT with Structured Sparsity 8 / 15

SFFT Algorithm for Block Sparse Functions

SFFT Algorithm for Block Sparse Functions (FAST) I

Choose u ≥ B as a power of 2.
Apply sparse FFT algorithm to all u at most n-sparse restrictions Âν

N .
Use the residue ν modulo u for the sparse FFT frequency
reconstruction as well.
Required samples using GFFT:

Ask tlu =
(
f
(

2πj
sk tlu

))sk tlu−1
j=0

for all k and l

tl : odd primes s.t. N
nu ≤

∏L
l=1 tl

sk : primes s.t. all ω ≡ ν mod u can be uniquely recovered from
mod sk , t1, . . . , tL for more than K/2 sk .

Every energetic frequency found for exactly one residue ν modulo u.
Accurate coefficient estimates guaranteed.
Choose the nB most energetic returned frequencies.

Sina Bittens Implementation of Sparse FFT with Structured Sparsity 8 / 15

SFFT Algorithm for Block Sparse Functions

SFFT Algorithm for Block Sparse Functions (FAST) I

Choose u ≥ B as a power of 2.
Apply sparse FFT algorithm to all u at most n-sparse restrictions Âν

N .
Use the residue ν modulo u for the sparse FFT frequency
reconstruction as well.
Required samples using GFFT:

Ask tlu =
(
f
(

2πj
sk tlu

))sk tlu−1
j=0

for all k and l

tl : odd primes s.t. N
nu ≤

∏L
l=1 tl

sk : primes s.t. all ω ≡ ν mod u can be uniquely recovered from
mod sk , t1, . . . , tL for more than K/2 sk .

Every energetic frequency found for exactly one residue ν modulo u.
Accurate coefficient estimates guaranteed.
Choose the nB most energetic returned frequencies.

Sina Bittens Implementation of Sparse FFT with Structured Sparsity 8 / 15

SFFT Algorithm for Block Sparse Functions

SFFT Algorithm for Block Sparse Functions (FAST) II

Input: Sparse function f with n blocks of length B and bandwidth N.
1: u = 2blog2 Bc+1, t1 < · · · < tL minimal, prime s.t. N

nu ≤
∏L

l=1 tl ,
s1 > max(n, tL), K = 2nblogs1

N
u c+ 1, s1 < · · · < sK minimal, prime.

2: for k = 1, . . . ,K , l = 0, . . . , L do

3: Compute Âsk tlu = DFT
(
f
(

2πj
sk tlu

))sk tlu−1
j=0

.

4: end for
5: for ν = 0, . . . , u − 1 do
6: Apply n-sparse GFFT to Âν

N to obtain
Sν := {ων1 , . . . , ωνn} and coefficient estimates xων1 , . . . , xωνn .

7: end for
Output: Choose the nB frequencies from

⋃u−1
ν=0 S

ν with largest magnitude
coefficient estimates.

Implementations available in Matlab and C++.

Sina Bittens Implementation of Sparse FFT with Structured Sparsity 9 / 15

SFFT Algorithm for Block Sparse Functions

SFFT Algorithm for Block Sparse Functions (FAST) II

Input: Sparse function f with n blocks of length B and bandwidth N.
1: u = 2blog2 Bc+1, t1 < · · · < tL minimal, prime s.t. N

nu ≤
∏L

l=1 tl ,
s1 > max(n, tL), K = 2nblogs1

N
u c+ 1, s1 < · · · < sK minimal, prime.

2: for k = 1, . . . ,K , l = 0, . . . , L do

3: Compute Âsk tlu = DFT
(
f
(

2πj
sk tlu

))sk tlu−1
j=0

.

4: end for
5: for ν = 0, . . . , u − 1 do
6: Apply n-sparse GFFT to Âν

N to obtain
Sν := {ων1 , . . . , ωνn} and coefficient estimates xων1 , . . . , xωνn .

7: end for
Output: Choose the nB frequencies from

⋃u−1
ν=0 S

ν with largest magnitude
coefficient estimates.

Implementations available in Matlab and C++.

Sina Bittens Implementation of Sparse FFT with Structured Sparsity 9 / 15

SFFT Algorithm for Block Sparse Functions

Runtime and Sampling Complexity

Theorem (B., Iwen, Zhang, 2018)

Let f ∈ L2([0, 2π]) be block sparse with n blocks of length B . The FAST
algorithm returns an nB-sparse vector x ∈ CN of accurate Fourier
coefficient estimates with runtime

O
(
B·n2·logB log4 N

log2 n

)
and sampling complexity

O
(
B·n2·log4 N

log2 n

)
.

GFFT for nB-sparse functions:

runtime: O
(
(nB)2 log6 N

log2(nB)

)
; required samples: O

(
(nB)2 log5 N

log2(nB)

)
.

Sina Bittens Implementation of Sparse FFT with Structured Sparsity 10 / 15

SFFT Algorithm for Block Sparse Functions

Runtime and Sampling Complexity

Theorem (B., Iwen, Zhang, 2018)

Let f ∈ L2([0, 2π]) be block sparse with n blocks of length B . The FAST
algorithm returns an nB-sparse vector x ∈ CN of accurate Fourier
coefficient estimates with runtime

O
(
B·n2·logB log4 N

log2 n

)
and sampling complexity

O
(
B·n2·log4 N

log2 n

)
.

GFFT for nB-sparse functions:

runtime: O
(
(nB)2 log6 N

log2(nB)

)
; required samples: O

(
(nB)2 log5 N

log2(nB)

)
.

Sina Bittens Implementation of Sparse FFT with Structured Sparsity 10 / 15

Numerical Experiments

Runtime - Varying the Block Length

10−3

10−2

10−1

100

101

102

4 8 16 32 64 128 256 512 1024 2048

R
un

tim
e
[s
]

Block Length B

GFFT
FAST
FFTW
sFFT 2.0
FAST (rand.)

Runtimes of deterministic FFT algorithms for N = 226 and n = 3 blocks.

Sina Bittens Implementation of Sparse FFT with Structured Sparsity 11 / 15

Numerical Experiments

Runtime - Varying the Bandwidth

10−3

10−2

10−1

100

101

102

216 218 220 222 224 226

R
un

tim
e
[s
]

Bandwidth N

GFFT
FAST
FFTW
sFFT 2.0
FAST (rand.)

Runtimes of deterministic FFT algorithms for n = 2 blocks of length B = 64.

Sina Bittens Implementation of Sparse FFT with Structured Sparsity 12 / 15

Numerical Experiments

Robustness to Noise

10−6

10−5

10−4

10−3

10−2

10−1

100

0 10 20 30 40 50 60

Er
ro
r
in

A
ve
ra
ge

L
1
no
rm

SNR

GFFT
FAST
FFTW
sFFT 2.0
FAST (rand.)

Reconstruction errors of deterministic FFT algorithms for N = 222 and n = 3
blocks of length B = 24.

Sina Bittens Implementation of Sparse FFT with Structured Sparsity 13 / 15

Further Results

Generalization of the Technique I

Can more general structures guarantee similar sparsities?
Block {ωj , ωj + 1, . . . , ωj + B − 1} generated by evaluating
Pj(x) = x + ωj at 0, 1, . . . ,B − 1.

Generate energetic frequencies by evaluating n polynomials of degree
d at B points.
Are the restrictions Âν

N to the frequencies congruent to ν modulo
u > B at most nd-sparse?

Problems:
Âν
N is at most nd-sparse for ν mod u if and only if none of the

generating polynomials is constant modulo u.
Knowledge about the polynomial coefficients is hard to obtain.

Sina Bittens Implementation of Sparse FFT with Structured Sparsity 14 / 15

Further Results

Generalization of the Technique I

Can more general structures guarantee similar sparsities?
Block {ωj , ωj + 1, . . . , ωj + B − 1} generated by evaluating
Pj(x) = x + ωj at 0, 1, . . . ,B − 1.
Generate energetic frequencies by evaluating n polynomials of degree
d at B points.

Are the restrictions Âν
N to the frequencies congruent to ν modulo

u > B at most nd-sparse?

Problems:
Âν
N is at most nd-sparse for ν mod u if and only if none of the

generating polynomials is constant modulo u.
Knowledge about the polynomial coefficients is hard to obtain.

Sina Bittens Implementation of Sparse FFT with Structured Sparsity 14 / 15

Further Results

Generalization of the Technique I

Can more general structures guarantee similar sparsities?
Block {ωj , ωj + 1, . . . , ωj + B − 1} generated by evaluating
Pj(x) = x + ωj at 0, 1, . . . ,B − 1.
Generate energetic frequencies by evaluating n polynomials of degree
d at B points.
Are the restrictions Âν

N to the frequencies congruent to ν modulo
u > B at most nd-sparse?

Problems:
Âν
N is at most nd-sparse for ν mod u if and only if none of the

generating polynomials is constant modulo u.
Knowledge about the polynomial coefficients is hard to obtain.

Sina Bittens Implementation of Sparse FFT with Structured Sparsity 14 / 15

Further Results

Generalization of the Technique I

Can more general structures guarantee similar sparsities?
Block {ωj , ωj + 1, . . . , ωj + B − 1} generated by evaluating
Pj(x) = x + ωj at 0, 1, . . . ,B − 1.
Generate energetic frequencies by evaluating n polynomials of degree
d at B points.
Are the restrictions Âν

N to the frequencies congruent to ν modulo
u > B at most nd-sparse?

Problems:
Âν
N is at most nd-sparse for ν mod u if and only if none of the

generating polynomials is constant modulo u.
Knowledge about the polynomial coefficients is hard to obtain.

Sina Bittens Implementation of Sparse FFT with Structured Sparsity 14 / 15

Further Results

Generalization of the Technique II

Choose primes u1, . . . , uM s.t. for more than half of them all
restrictions are at most nd-sparse.
Guaranteed by Chinese Remainder Theorem; related idea used in
GFFT.
Employ median arguments to find correct frequencies and coefficient
estimates.

Accurate coefficient estimates guaranteed.

Required samples: Ask tlum =
(
f
(

2πj
sk tlu

))sk tlum−1
j=0

for all k, l and m.

Runtime: O
(
Bd2n3 log5 N

log2(dn)

)
.

Sampling complexity: O
(

Bd2n3 log5 N
logB log2(dn)

)
Generalized technique efficient if B � d2n logN.

Sina Bittens Implementation of Sparse FFT with Structured Sparsity 15 / 15

Further Results

Generalization of the Technique II

Choose primes u1, . . . , uM s.t. for more than half of them all
restrictions are at most nd-sparse.
Guaranteed by Chinese Remainder Theorem; related idea used in
GFFT.
Employ median arguments to find correct frequencies and coefficient
estimates.

Accurate coefficient estimates guaranteed.

Required samples: Ask tlum =
(
f
(

2πj
sk tlu

))sk tlum−1
j=0

for all k, l and m.

Runtime: O
(
Bd2n3 log5 N

log2(dn)

)
.

Sampling complexity: O
(

Bd2n3 log5 N
logB log2(dn)

)
Generalized technique efficient if B � d2n logN.

Sina Bittens Implementation of Sparse FFT with Structured Sparsity 15 / 15

References

Bittens, S., Zhang, R., and Iwen, M.
A deterministic sparse FFT for functions with structured Fourier sparsity.
Adv. Comput. Math. (2018). https://doi.org/10.1007/s10444-018-9626-4.

Bittens, S., Zhang, R., and Iwen, M. (2017).
FAST - A Deterministic Sparse FFT for Functions with Structured Fourier Sparsity -
Algorithm for functions with block-structured (implemented in C++) and polynomially
structured Fourier sparsity (implemented in Matlab).
http://na.math.uni-goettingen.de/index.php?section=gruppe&subsection=software.

Iwen, M. (2010).
Combinatorial Sublinear-Time Fourier Algorithms.
Found. Comput. Math., 10(3):303–338.

Iwen, M. A. (2013).
Improved Approximation Guarantees for Sublinear-Time Fourier Algorithms.
Appl. Comput. Harmon. Anal., 34(1):57–82.

Segal, B. and Iwen, M. (2013).
Improved sparse Fourier approximation results: faster implementations, stronger
guarantees.
Numer. Algorithms, 63(2):239–263.

Segal, B. and Iwen, M. (2017).
Michigan State University’s Sparse FFT Repository - GFFT - Improved sparse Fourier
approximation results: faster implementations and stronger guarantees.
https://users.math.msu.edu/users/markiwen/Code.html.

https://doi.org/10.1007/s10444-018-9626-4
http://na.math.uni-goettingen.de/index.php?section=gruppe&subsection=software
https://users.math.msu.edu/users/markiwen/Code.html

Thank you for your attention.

Main Idea of GFFT

Recovers the most energetic frequencies and accurate estimates for their
Fourier coefficients of an m-sparse 2π-periodic function.

Find smallest primes t1, . . . , tL and s1, . . . , sK ≥ m s.t. unique
recovery of the frequencies from their residues modulo sk , t1, . . . , tL is
possible by the Chinese Remainder Theorem for all 1 ≤ k ≤ K .

Residues found by considering entries of Âsk tl for all l .

Fourier coefficients found accurately from Âsk tL(ω mod sktL) = cω.

Required samples: Ask tl =
(
f
(
2πj
sk tl

))sk tl−1
j=0

for all k and l .

Runtime for m-sparse functions: O
(
m2 log6 N
log2 m

)
.

Sampling complexity for m-sparse functions: O
(
m2 log5 N
log2 m

)
.

Sina Bittens Implementation of Sparse FFT with Structured Sparsity 1 / 2

Main Idea of GFFT

Recovers the most energetic frequencies and accurate estimates for their
Fourier coefficients of an m-sparse 2π-periodic function.

Find smallest primes t1, . . . , tL and s1, . . . , sK ≥ m s.t. unique
recovery of the frequencies from their residues modulo sk , t1, . . . , tL is
possible by the Chinese Remainder Theorem for all 1 ≤ k ≤ K .
Residues found by considering entries of Âsk tl for all l .

Fourier coefficients found accurately from Âsk tL(ω mod sktL) = cω.

Required samples: Ask tl =
(
f
(
2πj
sk tl

))sk tl−1
j=0

for all k and l .

Runtime for m-sparse functions: O
(
m2 log6 N
log2 m

)
.

Sampling complexity for m-sparse functions: O
(
m2 log5 N
log2 m

)
.

Sina Bittens Implementation of Sparse FFT with Structured Sparsity 1 / 2

Main Idea of GFFT

Recovers the most energetic frequencies and accurate estimates for their
Fourier coefficients of an m-sparse 2π-periodic function.

Find smallest primes t1, . . . , tL and s1, . . . , sK ≥ m s.t. unique
recovery of the frequencies from their residues modulo sk , t1, . . . , tL is
possible by the Chinese Remainder Theorem for all 1 ≤ k ≤ K .
Residues found by considering entries of Âsk tl for all l .

Fourier coefficients found accurately from Âsk tL(ω mod sktL) = cω.

Required samples: Ask tl =
(
f
(
2πj
sk tl

))sk tl−1
j=0

for all k and l .

Runtime for m-sparse functions: O
(
m2 log6 N
log2 m

)
.

Sampling complexity for m-sparse functions: O
(
m2 log5 N
log2 m

)
.

Sina Bittens Implementation of Sparse FFT with Structured Sparsity 1 / 2

GFFT Algorithm for Sparse Functions

Input: B-sparse function f with bandwidth N.
1: t1 < · · · < tL minimal, prime s.t. N

B ≤
∏L

l=1 tl , s1 > max(B, tL),
K = 2Bblogs1 Nc+ 1, s1 < · · · < sK minimal, prime.

2: for k = 1, . . . ,K , l = 0, . . . , L do

3: Compute Âsk tl = DFT
(
f
(
2πj
sk tl

))sk tl−1
j=0

.

4: for k = 1, . . . ,K do
5: for every residue h mod sk do
6: Find residues modulo t1, . . . , tL of ω ≡ h mod sk from Âsk tl .
7: Reconstruct ω from its residues.
8: for each ω found more than K/2 times do
9: cω ← median

{
Âsk tl (ω mod sktl) : k = 1, . . . ,K , l = 1, . . . , L

}
Output: The B frequencies with largest magnitude coefficient estimates.

Sina Bittens Implementation of Sparse FFT with Structured Sparsity 2 / 2

	Preliminaries
	Decomposition
	SFFT Algorithm for Block Sparse Functions
	Numerical Experiments
	Further Results
	Appendix

