Implementation of Sparse FFT with Structured Sparsity

Sina Bittens¹, Mark Iwen², Ruochuan Zhang²

¹University of Göttingen, Institute for Numerical and Applied Mathematics

²Michigan State University, Dept. of Mathematics, and Dept. of CMSE

CSE19 Spokane, Washington March 1, 2019

Motivation

- General *m*-sparse FFT algorithms do not use additional a priori known information about the signal structure:
 - Iwen (2010, deterministic): $\mathcal{O}\left(m^2 \log^4 N\right)$
 - Iwen (2013, randomized w.h.p.): $\mathcal{O}(m \log^4 N)$,
 - Plonka, Wannenwetsch, Cuyt, Lee (2018): $\mathcal{O}(m^2 \log N)$.
- FFT algorithms for signals with short support of length *m* cannot be generalized to two or more support intervals:
 - Plonka, Wannenwetsch (2016, 2017): $\mathcal{O}(m \log N)$, $\mathcal{O}(m \log m \log \frac{N}{m})$,
 - Bittens (2017): $\mathcal{O}\left(m\log m\log^2 \frac{N}{m}\right)$.

Motivation

- General *m*-sparse FFT algorithms do not use additional a priori known information about the signal structure:
 - Iwen (2010, deterministic): $\mathcal{O}\left(m^2 \log^4 N\right)$
 - Iwen (2013, randomized w.h.p.): $\mathcal{O}(m \log^4 N)$,
 - Plonka, Wannenwetsch, Cuyt, Lee (2018): $\mathcal{O}(m^2 \log N)$.
- FFT algorithms for signals with short support of length *m* cannot be generalized to two or more support intervals:
 - Plonka, Wannenwetsch (2016, 2017): $\mathcal{O}(m \log N)$, $\mathcal{O}(m \log m \log \frac{N}{m})$,
 - Bittens (2017): $\mathcal{O}\left(m\log m\log^2 \frac{N}{m}\right)$.

Aim: Find a deterministic FFT algorithm for 2π -periodic frequency sparse functions with more general structures:

- Multiple B-length blocks of frequencies,
- Frequencies generated by evaluating *n* polynomials of degree *d* at *B* points.

Contents

Preliminaries

2 Decomposition

3 SFFT Algorithm for Block Sparse Functions

4 Numerical Experiments

5 Further Results

Block Sparse Functions

Consider 2π -periodic f with bandwidth N and energetic frequencies contained in n blocks of length B,

$$\{\omega_j, \omega_j+1, \ldots, \omega_j+B-1\} \subset \{-\left\lceil \frac{N}{2}\right\rceil+1, \ldots, \left\lfloor \frac{N}{2}\right\rfloor\}.$$

Block Sparse Functions

Consider 2π -periodic f with bandwidth N and energetic frequencies contained in n blocks of length B,

$$\{\omega_j, \omega_j+1, \ldots, \omega_j+B-1\} \subset \{-\left\lceil \frac{N}{2}\right\rceil+1, \ldots, \left\lfloor \frac{N}{2}\right\rfloor\}.$$

f is block sparse and of the form

$$f: [0, 2\pi] \rightarrow \mathbb{C}, \quad f(x) = \sum_{j=1}^{n} \sum_{k=0}^{B-1} c_{\omega_j+k} \mathrm{e}^{\mathrm{i}(\omega_j+k)x}$$

with finite Fourier transform $\mathbf{c} = (c_{\omega})_{\omega \in \{-\lceil \frac{N}{2} \rceil + 1, \dots, \lfloor \frac{N}{2} \rfloor\}}$. Energetic Frequency: ω with $c_{\omega} \neq 0$.

Block Sparse Functions

Consider 2π -periodic f with bandwidth N and energetic frequencies contained in n blocks of length B,

$$\{\omega_j, \omega_j+1, \ldots, \omega_j+B-1\} \subset \{-\left\lceil \frac{N}{2} \right\rceil+1, \ldots, \left\lfloor \frac{N}{2} \right\rfloor\}.$$

f is block sparse and of the form

$$f: [0,2\pi] \rightarrow \mathbb{C}, \quad f(x) = \sum_{j=1}^{n} \sum_{k=0}^{B-1} c_{\omega_j+k} \mathrm{e}^{\mathrm{i}(\omega_j+k)x}$$

with finite Fourier transform $\mathbf{c} = (c_{\omega})_{\omega \in \{-\lceil \frac{N}{2} \rceil + 1, \dots, \lfloor \frac{N}{2} \rfloor\}}$. Energetic Frequency: ω with $c_{\omega} \neq 0$.

Example (n = 2, B = 3)

$$\mathbf{c} = (0, \dots, 0, c_{\omega_1}, c_{\omega_1+1}, c_{\omega_1+2}, 0, \dots, 0, c_{\omega_2}, c_{\omega_2+1}, c_{\omega_2+2}, 0, \dots, 0)^{\mathcal{T}}$$

Discrete Fourier Transform (DFT)

Definition (Discrete Fourier Transform)

Let
$$\mathbf{A} = (A(j))_{j=0}^{M-1} \in \mathbb{C}^{M}$$
. Define $\widehat{\mathbf{A}} := \left(\widehat{A}(\omega)\right)_{\omega=-\lceil \frac{M}{2} \rceil+1}^{\lfloor \frac{M}{2} \rfloor} \in \mathbb{C}^{M}$ by
 $\widehat{A}(\omega) := \frac{1}{M} \cdot \sum_{j=0}^{M-1} e^{\frac{-2\pi i j \omega}{M}} \cdot A(j).$

Runtime of the fast DFT: $\mathcal{O}(M \log M)$.

Discrete Fourier Transform (DFT)

Definition (Discrete Fourier Transform)

Let
$$\mathbf{A} = (A(j))_{j=0}^{M-1} \in \mathbb{C}^{M}$$
. Define $\widehat{\mathbf{A}} := \left(\widehat{A}(\omega)\right)_{\omega=-\lceil \frac{M}{2} \rceil+1}^{\lfloor \frac{M}{2} \rfloor} \in \mathbb{C}^{M}$ by
 $\widehat{A}(\omega) := \frac{1}{M} \cdot \sum_{j=0}^{M-1} e^{\frac{-2\pi i j \omega}{M}} \cdot A(j).$

Runtime of the fast DFT: $\mathcal{O}(M \log M)$.

Definition (Vector of Equidistant Samples)

For $f: [0, 2\pi] \to \mathbb{C}$ and $M \in \mathbb{N}$ define

$$\mathbf{A}_{M} = (A_{M}(j))_{j=0}^{M-1} \coloneqq \left(f\left(\frac{2\pi j}{M}\right)\right)_{j=0}^{M-1}.$$

Main Idea - Decomposition

•
$$\mathbf{A}_N = \left(f\left(\frac{2\pi j}{N}\right) \right)_{j=0}^{N-1}$$
.

• *n* frequency blocks of length $B \Rightarrow \widehat{\mathbf{A}_N}$ is *nB*-sparse,

$$\widehat{A_N}(\omega) = \begin{cases} c_{\omega} & \text{if } \omega \in \bigcup_{j=1}^n \{\omega_j, \omega_j + 1, \dots, \omega_j + B - 1\}, \\ 0 & \text{otherwise.} \end{cases}$$

Main Idea - Decomposition

•
$$\mathbf{A}_N = \left(f\left(\frac{2\pi j}{N}\right)\right)_{j=0}^{N-1}$$
.

• *n* frequency blocks of length $B \Rightarrow \widehat{\mathbf{A}_N}$ is *nB*-sparse,

$$\widehat{A_N}(\omega) = \begin{cases} c_{\omega} & \text{if } \omega \in \bigcup_{j=1}^n \{\omega_j, \omega_j + 1, \dots, \omega_j + B - 1\}, \\ 0 & \text{otherwise.} \end{cases}$$

- General sparse FFT algorithms only efficient for very sparse functions.
- Approach: Decompose input function into sparser functions and apply sparse FFT algorithm to all of them.

Restriction to the Frequencies Congruent to $\boldsymbol{\nu}$

Definition (Restriction)

Let f be block sparse with n blocks of length B, $u \ge B$, $\nu \in \{0, \ldots, u-1\}$.

$$\widehat{A_N^{\nu}}(\omega) \coloneqq \begin{cases} \widehat{A_N}(\omega) & \text{if } \omega \equiv \nu \mod u, \\ 0 & \text{otherwise.} \end{cases}$$

Restriction to the Frequencies Congruent to u

Definition (Restriction)

Let f be block sparse with n blocks of length B, $u \ge B$, $\nu \in \{0, \ldots, u-1\}$.

$$\widehat{A_N^{
u}}(\omega) \coloneqq egin{cases} \widehat{A_N}(\omega) & ext{if } \omega \equiv
u \mod u, \ 0 & ext{otherwise.} \end{cases}$$

- $\widehat{\mathbf{A}_{N}^{\nu}}$: restriction of $\widehat{\mathbf{A}_{N}}$ to frequencies $\omega \equiv \nu \mod u$.
- $\widehat{\mathbf{A}}_{N}^{\widehat{\nu}}$ is at most *n*-sparse.
- Applying sparse FFT to $\widehat{\mathbf{A}}_{N}^{\widehat{\nu}}$ is fast.
- Restriction to residues agrees well with GFFT.

Block Sparse Case

Let f be 1-block sparse.

- *f* has frequency support $S := \{\omega_1, \omega_1 + 1, \dots, \omega_1 + B 1\}$.
- Choose $u \ge B$. Then $|\{\omega \equiv \nu \mod u : \omega \in S\}| \le 1$ for all $\nu = 0, \dots, u-1$.
- There is at most one energetic frequency congruent to ν modulo u for each residue ν .

Block Sparse Case

Let f be 1-block sparse.

- *f* has frequency support $S := \{\omega_1, \omega_1 + 1, \dots, \omega_1 + B 1\}$.
- Choose $u \ge B$. Then $|\{\omega \equiv \nu \mod u : \omega \in S\}| \le 1$ for all $\nu = 0, \dots, u-1$.
- There is at most one energetic frequency congruent to ν modulo u for each residue ν .

Let f be n-block sparse.

- *f* has frequency support $S := \bigcup_{j=1}^{n} \{\omega_j, \omega_j + 1, \dots, \omega_j + B 1\}.$
- Choose $u \ge B$. Then $|\{\omega \equiv \nu \mod u : \omega \in S\}| \le n$ for all $\nu = 0, \dots, u-1$.
- There are at most *n* energetic frequencies congruent to ν modulo *u* for each residue ν .

Decomposition

Example: N = 15, n = 2, B = u = 3 (*: nonzero entries)

Decomposition

Example: N = 15, n = 2, B = u = 3 (*: nonzero entries)

Decomposition

Example: N = 15, n = 2, B = u = 3 (*: nonzero entries)

SFFT Algorithm for Block Sparse Functions (FAST) I

- Choose $u \ge B$ as a power of 2.
- Apply sparse FFT algorithm to all u at most *n*-sparse restrictions $\widehat{\mathbf{A}}_{N}^{\nu}$.

SFFT Algorithm for Block Sparse Functions (FAST) I

- Choose $u \ge B$ as a power of 2.
- Apply sparse FFT algorithm to all u at most *n*-sparse restrictions $\widehat{\mathbf{A}}_{N}^{\nu}$.
- Use the residue ν modulo u for the sparse FFT frequency reconstruction as well.
- Required samples using GFFT:

$$\mathbf{A}_{s_k t_l u} = \left(f\left(rac{2\pi j}{s_k t_l u}
ight)
ight)_{j=0}^{s_k t_l u-1}$$
 for all k and l

• t_l : odd primes s.t. $\frac{N}{nu} \leq \prod_{l=1}^{L} t_l$

• s_k : primes s.t. all $\omega \equiv \nu \mod u$ can be uniquely recovered from mod s_k, t_1, \ldots, t_L for more than $K/2 s_k$.

SFFT Algorithm for Block Sparse Functions (FAST) I

- Choose $u \ge B$ as a power of 2.
- Apply sparse FFT algorithm to all u at most *n*-sparse restrictions $\widehat{\mathbf{A}}_{N}^{\nu}$.
- Use the residue ν modulo u for the sparse FFT frequency reconstruction as well.
- Required samples using GFFT:

$$\mathbf{A}_{s_k t_l u} = \left(f\left(rac{2\pi j}{s_k t_l u}
ight)
ight)_{j=0}^{s_k t_l u - 1}$$
 for all k and l

• t_l : odd primes s.t. $\frac{N}{nu} \leq \prod_{l=1}^{L} t_l$

- s_k : primes s.t. all $\omega \equiv \nu \mod u$ can be uniquely recovered from mod s_k, t_1, \ldots, t_L for more than $K/2 s_k$.
- Every energetic frequency found for exactly one residue ν modulo u.
- Accurate coefficient estimates guaranteed.
- Choose the *nB* most energetic returned frequencies.

SFFT Algorithm for Block Sparse Functions (FAST) II

Input: Sparse function f with n blocks of length B and bandwidth N. 1: $u = 2^{\lfloor \log_2 B \rfloor + 1}$, $t_1 < \cdots < t_L$ minimal, prime s.t. $\frac{N}{n_l} \leq \prod_{l=1}^{L} t_l$ $s_1 > \max(n, t_L), \ K = 2n |\log_{s_1} \frac{N}{n}| + 1, \ s_1 < \cdots < s_K$ minimal, prime. 2: for k = 1, ..., K, l = 0, ..., L do Compute $\widehat{\mathbf{A}_{s_k t_l u}} = \mathbf{DFT} \left(f\left(\frac{2\pi j}{s_k t_l u}\right) \right)_{i=0}^{s_k t_l u-1}$. 3: 4: end for 5: for $\nu = 0, ..., u - 1$ do 6: Apply *n*-sparse GFFT to $\widehat{\mathbf{A}}_{N}^{\hat{\nu}}$ to obtain $S^{\nu} := \{\omega_1^{\nu}, \ldots, \omega_n^{\nu}\}$ and coefficient estimates $x_{\omega_1^{\nu}}, \ldots, x_{\omega_n^{\nu}}$. 7: end for

Output: Choose the *nB* frequencies from $\bigcup_{\nu=0}^{u-1} S^{\nu}$ with largest magnitude coefficient estimates.

Implementations available in Matlab and C++.

SFFT Algorithm for Block Sparse Functions (FAST) II

Input: Sparse function f with n blocks of length B and bandwidth N. 1: $u = 2^{\lfloor \log_2 B \rfloor + 1}$, $t_1 < \cdots < t_L$ minimal, prime s.t. $\frac{N}{nu} \leq \prod_{l=1}^{L} t_l$, $s_1 > \max(n, t_L)$, $K = 2n \lfloor \log_{s_1} \frac{N}{u} \rfloor + 1$, $s_1 < \cdots < s_K$ minimal, prime. 2: for $k = 1, \dots, K$, $l = 0, \dots, L$ do 3: Compute $\widehat{A}_{s_k t_l u} = \text{DFT} \left(f \left(\frac{2\pi j}{s_k t_l u} \right) \right)_{j=0}^{s_k t_l u - 1}$. 4: end for 5: for $\nu = 0, \dots, u - 1$ do 6: Apply *n*-sparse GFFT to \widehat{A}_N^{ν} to obtain $S^{\nu} := \{ \omega_1^{\nu}, \dots, \omega_n^{\nu} \}$ and coefficient estimates $x_{\omega_1^{\nu}}, \dots, x_{\omega_n^{\nu}}$.

- 7: end for
- **Output:** Choose the *nB* frequencies from $\bigcup_{\nu=0}^{u-1} S^{\nu}$ with largest magnitude coefficient estimates.

Implementations available in Matlab and C++.

Runtime and Sampling Complexity

Theorem (B., Iwen, Zhang, 2018)

Let $f \in L^2([0, 2\pi])$ be block sparse with n blocks of length B. The FAST algorithm returns an nB-sparse vector $\mathbf{x} \in \mathbb{C}^N$ of accurate Fourier coefficient estimates with runtime

$$\mathcal{O}\left(\frac{B \cdot n^2 \cdot \log B \log^4 N}{\log^2 n}\right)$$

and sampling complexity

$$\mathcal{O}\left(\frac{B \cdot n^2 \cdot \log^4 N}{\log^2 n}\right).$$

Runtime and Sampling Complexity

Theorem (B., Iwen, Zhang, 2018)

Let $f \in L^2([0, 2\pi])$ be block sparse with n blocks of length B. The FAST algorithm returns an nB-sparse vector $\mathbf{x} \in \mathbb{C}^N$ of accurate Fourier coefficient estimates with runtime

$$\mathcal{O}\left(\frac{B \cdot n^2 \cdot \log B \log^4 N}{\log^2 n}\right)$$

and sampling complexity

$$\mathcal{O}\left(\frac{B\cdot n^2\cdot \log^4 N}{\log^2 n}\right).$$

GFFT for *nB*-sparse functions:

runtime:
$$\mathcal{O}\left(\frac{(nB)^2\log^6 N}{\log^2(nB)}\right)$$
; required samples: $\mathcal{O}\left(\frac{(nB)^2\log^5 N}{\log^2(nB)}\right)$.

Runtime - Varying the Block Length

Runtimes of deterministic FFT algorithms for $N = 2^{26}$ and n = 3 blocks.

Runtime - Varying the Bandwidth

Runtimes of deterministic FFT algorithms for n = 2 blocks of length B = 64.

Robustness to Noise

Reconstruction errors of deterministic FFT algorithms for $N = 2^{22}$ and n = 3 blocks of length $B = 2^4$.

Sina Bittens

Can more general structures guarantee similar sparsities?

• Block $\{\omega_j, \omega_j + 1, \dots, \omega_j + B - 1\}$ generated by evaluating $P_j(x) = x + \omega_j$ at $0, 1, \dots, B - 1$.

Can more general structures guarantee similar sparsities?

- Block $\{\omega_j, \omega_j + 1, \dots, \omega_j + B 1\}$ generated by evaluating $P_j(x) = x + \omega_j$ at $0, 1, \dots, B 1$.
- Generate energetic frequencies by evaluating *n* polynomials of degree *d* at *B* points.

Can more general structures guarantee similar sparsities?

- Block $\{\omega_j, \omega_j + 1, \dots, \omega_j + B 1\}$ generated by evaluating $P_j(x) = x + \omega_j$ at $0, 1, \dots, B 1$.
- Generate energetic frequencies by evaluating *n* polynomials of degree *d* at *B* points.
- Are the restrictions $\widehat{\mathbf{A}}_{N}^{\nu}$ to the frequencies congruent to ν modulo u > B at most *nd*-sparse?

Can more general structures guarantee similar sparsities?

- Block $\{\omega_j, \omega_j + 1, \dots, \omega_j + B 1\}$ generated by evaluating $P_j(x) = x + \omega_j$ at $0, 1, \dots, B 1$.
- Generate energetic frequencies by evaluating *n* polynomials of degree *d* at *B* points.
- Are the restrictions $\widehat{\mathbf{A}}_{N}^{\nu}$ to the frequencies congruent to ν modulo u > B at most *nd*-sparse?

Problems:

- $\widehat{\mathbf{A}}_{N}^{\nu}$ is at most *nd*-sparse for $\nu \mod u$ if and only if none of the generating polynomials is constant modulo u.
- Knowledge about the polynomial coefficients is hard to obtain.

- Choose primes u_1, \ldots, u_M s.t. for more than half of them all restrictions are at most *nd*-sparse.
- Guaranteed by Chinese Remainder Theorem; related idea used in GFFT.
- Employ median arguments to find correct frequencies and coefficient estimates.

- Choose primes u_1, \ldots, u_M s.t. for more than half of them all restrictions are at most *nd*-sparse.
- Guaranteed by Chinese Remainder Theorem; related idea used in GFFT.
- Employ median arguments to find correct frequencies and coefficient estimates.
- Accurate coefficient estimates guaranteed.
- Required samples: $\mathbf{A}_{s_k t_l u_m} = \left(f\left(\frac{2\pi j}{s_k t_l u}\right) \right)_{j=0}^{s_k t_l u_m 1}$ for all k, l and m.
- Runtime: $\mathcal{O}\left(\frac{Bd^2n^3\log^5 N}{\log^2(dn)}\right)$.
- Sampling complexity: $\mathcal{O}\left(\frac{Bd^2n^3\log^5 N}{\log B\log^2(dn)}\right)$
- Generalized technique efficient if $B \gg d^2 n \log N$.

References

Bittens, S., Zhang, R., and Iwen, M.

A deterministic sparse FFT for functions with structured Fourier sparsity. Adv. Comput. Math. (2018). https://doi.org/10.1007/s10444-018-9626-4.

Bittens, S., Zhang, R., and Iwen, M. (2017).

FAST - A Deterministic Sparse FFT for Functions with Structured Fourier Sparsity - Algorithm for functions with block-structured (implemented in C++) and polynomially structured Fourier sparsity (implemented in Matlab).

 $\verb+http://na.math.uni-goettingen.de/index.php?section=gruppe&subsection=software.$

Iwen, M. (2010).

Combinatorial Sublinear-Time Fourier Algorithms.

Found. Comput. Math., 10(3):303-338.

Iwen, M. A. (2013).

Improved Approximation Guarantees for Sublinear-Time Fourier Algorithms. *Appl. Comput. Harmon. Anal.*, 34(1):57–82.

Segal, B. and Iwen, M. (2013).

Improved sparse Fourier approximation results: faster implementations, stronger guarantees.

Numer. Algorithms, 63(2):239-263.

.

Segal, B. and Iwen, M. (2017).

Michigan State University's Sparse FFT Repository - GFFT - Improved sparse Fourier approximation results: faster implementations and stronger guarantees. https://users.math.msu.edu/users/markiwen/Code.html.

Thank you for your attention.

Recovers the most energetic frequencies and accurate estimates for their Fourier coefficients of an *m*-sparse 2π -periodic function.

Find smallest primes t₁,..., t_L and s₁,..., s_K ≥ m s.t. unique recovery of the frequencies from their residues modulo s_k, t₁,..., t_L is possible by the Chinese Remainder Theorem for all 1 ≤ k ≤ K.

Recovers the most energetic frequencies and accurate estimates for their Fourier coefficients of an *m*-sparse 2π -periodic function.

- Find smallest primes t₁,..., t_L and s₁,..., s_K ≥ m s.t. unique recovery of the frequencies from their residues modulo s_k, t₁,..., t_L is possible by the Chinese Remainder Theorem for all 1 ≤ k ≤ K.
- Residues found by considering entries of $\widehat{\mathbf{A}_{s_k t_l}}$ for all *l*.
- Fourier coefficients found accurately from $\widehat{A_{s_k t_L}}(\omega \mod s_k t_L) = c_{\omega}$.

Recovers the most energetic frequencies and accurate estimates for their Fourier coefficients of an *m*-sparse 2π -periodic function.

- Find smallest primes t₁,..., t_L and s₁,..., s_K ≥ m s.t. unique recovery of the frequencies from their residues modulo s_k, t₁,..., t_L is possible by the Chinese Remainder Theorem for all 1 ≤ k ≤ K.
- Residues found by considering entries of $\widehat{\mathbf{A}_{s_k t_l}}$ for all *l*.
- Fourier coefficients found accurately from $\widehat{A_{s_k t_L}}(\omega \mod s_k t_L) = c_{\omega}$.
- Required samples: $\mathbf{A}_{s_k t_l} = \left(f\left(\frac{2\pi j}{s_k t_l}\right) \right)_{j=0}^{s_k t_l 1}$ for all k and l.
- Runtime for *m*-sparse functions: $O\left(\frac{m^2 \log^6 N}{\log^2 m}\right)$.
- Sampling complexity for *m*-sparse functions: $\mathcal{O}\left(\frac{m^2 \log^5 N}{\log^2 m}\right)$.

GFFT Algorithm for Sparse Functions

Input: *B*-sparse function *f* with bandwidth *N*.

1: $t_1 < \cdots < t_L$ minimal, prime s.t. $\frac{N}{B} \leq \prod_{l=1}^{L} t_l$, $s_1 > \max(B, t_L)$, $K = 2B\lfloor \log_{s_1} N \rfloor + 1$, $s_1 < \cdots < s_K$ minimal, prime. 2: for $k = 1, \dots, K$, $l = 0, \dots, L$ do

3: Compute
$$\widehat{\mathbf{A}_{s_k t_l}} = \mathbf{DFT}\left(f\left(\frac{2\pi j}{s_k t_l}\right)\right)_{j=0}^{s_k t_l-1}$$

4: for
$$k = 1, ..., K$$
 do

- 5: for every residue $h \mod s_k$ do
- 6: Find residues modulo t_1, \ldots, t_L of $\omega \equiv h \mod s_k$ from $\widehat{\mathbf{A}_{s_k t_l}}$.

7: Reconstruct ω from its residues.

8: for each ω found more than K/2 times do

9:
$$c_{\omega} \leftarrow \text{median}\left\{\widehat{A_{s_kt_l}}(\omega \mod s_kt_l): k = 1, \dots, K, l = 1, \dots, L\right\}$$

Output: The *B* frequencies with largest magnitude coefficient estimates.