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Sparse Fourier Transforms (SFTs)

We consider
f (x) =

∑
n∈ND

cne
2πin·x ≈

∑
n∈S

cne
2πin·x

where n ∈ [−N
2 ,

N
2 )D ∩ ZD , nonzero cn ∈ C, x ∈ [0, 1)D or RD ,

|S| = s � ND .

The Goal: Approximate f : [0, 1)D 7→ C using as few evaluations as
possible, as quickly as possible.

There exist 1D sparse Fourier transforms utilizing the ideas of phase-shift
and isolation of the Fourier frequencies by taking modulo p, a prime
number. Various transformations, projections, and rotations in the physical
domain are taken to isolate the frequency vectors and approximate them
entry-wise.
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Description of 1D Sublinear Sparse Fourier Transform (D=1)

p : prime number s.t. s < p � N, ε ≤ 1/N

n = 1
2πεArg

(
pce2πiεn

pc

)
, c = 1

ppc
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Description of 1D Sublinear Sparse Fourier Transform

Get two sets of p > s samples from f where p is a prime number and ε ≤ 1/N.

fp,0 =
(
f (0), f ( 1

p
), f ( 2

p
), f ( 3

p
), · · · , f ( p−1

p
)
)

fp,ε =
(
f (0 + ε), f ( 1

p
+ ε), f ( 2

p
+ ε), f ( 3

p
+ ε), · · · , f ( p−1

p
+ ε)

)
F(fp,0)[h] = p

∑
nj=h( mod p) cj , h = 0, 1, 2, · · · , p − 1

F(fp,ε)[h] = p
∑

nj=h( mod p) cje
2πiεnj

nj = 1
2πε

Arg
(
F(fp,ε)[h]

F(fp,0)[h]

)
= 1

2πε
Arg

(
pcj e

2πiεnj

pcj

)
, cj = 1

p
F(fp,0)[h] if there is no collision

of frequencies.

Test for Collision

If there is only one frequency n congruent to h mod p, then the following equation holds,
|F(fp,ε)[h]|
|F(fp,0)[h]| = 1.

Otherwise, the equation does not hold for certain ε.

Average-case time complexity : Θ(s log s)

Average-case sampling complxity : Θ(s)
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2D Sparse Fourier Transforms

Figure: Process of the parallel projection method in 2D

Figure: Worst case scenario in 2D and solving it through the tilting method
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Analysis of SFTs

Performance of the tilting method in 2D

Let n = (n1, n2) ∈ S ⊂
[
−N

2
, N

2

)2
∩ Z2. If tan θ = a

b
such that c > b > a are Pythagorean

triples where b > N and a are relative primes, then all (cn1 cos θ− cn2 sin θ, cn1 sin θ+ cn2 cos θ)
rotated by θ does not collide with any other pair through the parallel projection. Thus, all
rotated pairs can be identified by the parallel projection method.

A finite series of rotations in 2D subspaces can be utilized to extend the tilting method
to the general higher dimensional setting.
Furthermore, if the number of dimensions, D, gets larger, the probability that the
worst-case scenario happens converges to 0.

Partial Unwrapping Method for 4D

f (x) =
∑

n ce
2πin·x

c ∈ C, n ∈
[
− N

2
, N

2

)4
∩ Z4 =

([
− N

2
, N

2

)2
∩ Z2

)
2

(n1, n2, n3, n4)→ (n1 + Nn2, n3 + Nn4) =: (ñ1, ñ2)

The bandwidth of each entry is increased so that the chance of collision from projection
decreased.

Shifting size ε should be smaller≤ 1
N2
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Analysis of SFTs

Average-case runtime complexity

Assume N ≥ 5s and there is no worst-case scenario. Let T (s) denote the runtime
of the parallel projection method on a random signal setting. Then
E[T (s)] = Θ(Ds log s) and

P[T (s) > Θ(Ds log s) + tDs log s] ≤ 5−t .

Average-case sampling complexity

Assume N ≥ 5s and there is no worst-case scenario. Let S(s) denote the number
of samples used in the parallel projection method on a random signal setting.
Then E[S(s)] = Θ(Ds) and

P[S(s) > Θ(Ds) + tDs] ≤ 5−t .
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Multiscale Algorithm for Noisy Data

f̃w,yp,ε [j] = fw,yp,ε [j] + zj where zj ’s are i.i.d. complex Gaussian variables with mean 0 and
variance σ2.̂̃
f
w,y

p,ε [h] = f̂w,yp,ε [h] + ẑ[h] where ẑ[h] =
∑p−1

j=0 zje
−2πihj/p

E

[̂̃
f
w,y

p,0 [h]

]
= f̂w,yp,0 [h] and E

[
|̂̃f
w,y

p,0 [h]− f̂w,yp,0 [h]|2
]

= pσ2

E

[̂̃
f
w,y

p,ε [h]

]
= f̂w,yp,ε [h] and E

[
|̂̃f
w,y

p,ε [h]− f̂w,yp,ε [h]|2
]

= pσ2

For a non-collision ny ,

̂̃
f
w,y

p,ε [h]̂̃
f
w,y

p,0 [h]
=

f̂w,yp,0 [h]e2πiny ε +O(σ
√
p)

f̂w,yp,0 [h] +O(σ
√
p)

= e2πiny ε +O(σ/cn
√
p)

∥∥∥∥∥ 1
2π

Arg
(̂̃fw,yp,ε [h]̂̃
f
w,y

p,0 [h]

)
− ny ε

∥∥∥∥∥
Z

≤ O
(

σ
|cn|
√
p

)
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Multiscale Frequency Estimation

ε0 < 1/N, ε0ñy =Z
1

2πArg

(̂̃
f
w,y

p,ε0
[h]̂̃

f
w,y

p,0 [h]

)
ñy = ny (mod p)

ε1 > 1/N > ε0, b1 = 1
2πArg

(̂̃
f
w,y

p,ε1
[h]̂̃

f
w,y

p,0 [h]

)
b1 ≈ ε1ny (mod [− 1

2 ,
1
2 ))

ε1(ny − ñy ) ≈ (b1 − ε1ñy )(mod [− 1
2 ,

1
2 ))

ny − (ñy + (b1 − ε1ñy )(mod [− 1
2 ,

1
2 ))/ε1) = O( σ

ε1
√
p )

This error correction process is iterated with progressively larger shifts εj .
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Multiscale Frequency Estimation

Let n ∈ [−N
2 ,

N
2 ). Let 0 < ε0 < ε1 < · · · < εm and b0, b1, · · · , bm ∈ R such that

‖εjn − bj‖Z < δ, 0 ≤ j ≤ m

where 0 < δ ≤ 1
4 . Assume that ε0 ≤ 1−2δ

N and βj := εj/εj−1 ≤ (1− 2δ)/(2δ).
Then there exist d0, d1, · · · , dm ∈ R, each computable from {εj} and {bj}, such
that

|ñ − n| ≤ δ

ε0

m∏
j=1

β−1
j where ñ :=

m∑
j=0

dj
εj
.

Corollary 1

Assume that in the above theorem we have βj = β where β ≤ (1− 2δ)/(2δ), i.e.,
εj = βjε0 for all j . Let m ≥ blogβ

2δ
ε0
c+ 1. Then

|ñ − n| ≤ δ

ε0
β−m <

1

2
.
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Multiscale Approach for Noisy Samples

Average-case analysis of the multiscale approach

Let f z(x) = f (x) + z(x), where f̂ (n) is s-sparse with all frequencies satisfying
n ∈ S ⊂ [−N/2,N/2)D ∩ ZD and not forming any worst case scenario, and z is
complex i.i.d. Gaussian noise of variance σ2. Moreover, suppose that
s > C (β(β + 1)cminσ)2 for some constant C (chosen carefully so that some
technical assumptions are satisfied). The multiscale parallel projection method,
given N,D, s, β with N > 5s and access to f z(x) returns a list of s pairs (n̂, cn̂)
such that (i) each n̂ ∈ S and (ii) for each n̂, there is an n ∈ S such that n ∈ S
with |cn − cn̂| ≤ Cσ/

√
s. The average-case runtime and sampling complexity are

Θ(sD log s logN) and Θ(sD logN),

respectively, over the class of random signals.
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Numerics

(a) (b)

Figure: Average samples and average runtime (nosieless)
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Numerics

(a) (b)

Figure: Average samples and average runtime (noisy)
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Numerics
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Figure: Average `1 error divided by s
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Thanks for Listening!

Questions?
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