High-dimensional Sparse FFT

Bosu Choi, Andrew Christlieb ${ }^{(a)}$, Yang Wang ${ }^{(b)}$

(a) Department of Computational Mathematics, Science and Engineering (CMSE),

Michigan State Univ,
(b) Department of Mathematics, The Hong Kong Univ. of Science and Technology

March 1, 2019

Sparse Fourier Transforms (SFTs)

- We consider

$$
f(\mathbf{x})=\sum_{\mathbf{n} \in \mathbb{N}^{D}} c_{\mathbf{n}} \mathbb{e}^{2 \pi \mathrm{i} \mathbf{n} \cdot \mathbf{x}} \approx \sum_{\mathbf{n} \in \mathcal{S}} c_{\mathbf{n}} \mathbb{e}^{2 \pi \mathrm{in} \cdot \mathbf{x}}
$$

where $\mathbf{n} \in\left[-\frac{N}{2}, \frac{N}{2}\right)^{D} \cap \mathbb{Z}^{D}$, nonzero $c_{\mathbf{n}} \in \mathbb{C}, \mathbf{x} \in[0,1)^{D}$ or \mathbb{R}^{D}, $|\mathcal{S}|=s \ll N^{D}$.

- The Goal: Approximate $f:[0,1)^{D} \mapsto \mathbb{C}$ using as few evaluations as possible, as quickly as possible.
- There exist 1D sparse Fourier transforms utilizing the ideas of phase-shift and isolation of the Fourier frequencies by taking modulo p, a prime number. Various transformations, projections, and rotations in the physical domain are taken to isolate the frequency vectors and approximate them entry-wise.

Sparse Fourier Transforms (SFTs)

- We consider

$$
f(\mathbf{x})=\sum_{\mathbf{n} \in \mathbb{N}^{D}} c_{\mathbf{n}} \mathbb{e}^{2 \pi \mathrm{i} \mathbf{n} \cdot \mathbf{x}} \approx \sum_{\mathbf{n} \in \mathcal{S}} c_{\mathbf{n}} \mathbb{e}^{2 \pi \mathrm{in} \cdot \mathbf{x}}
$$

where $\mathbf{n} \in\left[-\frac{N}{2}, \frac{N}{2}\right)^{D} \cap \mathbb{Z}^{D}$, nonzero $c_{\mathbf{n}} \in \mathbb{C}, \mathbf{x} \in[0,1)^{D}$ or \mathbb{R}^{D}, $|\mathcal{S}|=s \ll N^{D}$.

- The Goal: Approximate $f:[0,1)^{D} \mapsto \mathbb{C}$ using as few evaluations as possible, as quickly as possible.
- There exist 1D sparse Fourier transforms utilizing the ideas of phase-shift and isolation of the Fourier frequencies by taking modulo p, a prime number. Various transformations, projections, and rotations in the physical domain are taken to isolate the frequency vectors and approximate them entry-wise.

Sparse Fourier Transforms (SFTs)

- We consider

$$
f(\mathbf{x})=\sum_{\mathbf{n} \in \mathbb{N}^{D}} c_{\mathbf{n}} \mathbb{e}^{2 \pi \mathrm{i} \mathbf{n} \cdot \mathbf{x}} \approx \sum_{\mathbf{n} \in \mathcal{S}} c_{\mathbf{n}} \mathbb{e}^{2 \pi \mathrm{in} \cdot \mathbf{x}}
$$

where $\mathbf{n} \in\left[-\frac{N}{2}, \frac{N}{2}\right)^{D} \cap \mathbb{Z}^{D}$, nonzero $c_{\mathbf{n}} \in \mathbb{C}, \mathbf{x} \in[0,1)^{D}$ or \mathbb{R}^{D}, $|\mathcal{S}|=s \ll N^{D}$.

- The Goal: Approximate $f:[0,1)^{D} \mapsto \mathbb{C}$ using as few evaluations as possible, as quickly as possible.
- There exist 1D sparse Fourier transforms utilizing the ideas of phase-shift and isolation of the Fourier frequencies by taking modulo p, a prime number. Various transformations, projections, and rotations in the physical domain are taken to isolate the frequency vectors and approximate them entry-wise.

Description of 1D Sublinear Sparse Fourier Transform ($\mathrm{D}=1$)

- p : prime number s.t. $s<p \ll N, \epsilon \leq 1 / N$
- $n=\frac{1}{2 \pi \epsilon} \operatorname{Arg}\left(\frac{p c e^{2 \pi i \epsilon n}}{p c}\right), c=\frac{1}{p} p c$

Description of 1D Sublinear Sparse Fourier Transform

- Get two sets of $p>s$ samples from f where p is a prime number and $\epsilon \leq 1 / N$.
- $\mathbf{f}_{p, 0}=\left(f(0), f\left(\frac{1}{p}\right), f\left(\frac{2}{p}\right), f\left(\frac{3}{p}\right), \cdots, f\left(\frac{p-1}{p}\right)\right)$
- $\mathbf{f}_{p, \epsilon}=\left(f(0+\epsilon), f\left(\frac{1}{p}+\epsilon\right), f\left(\frac{2}{p}+\epsilon\right), f\left(\frac{3}{p}+\epsilon\right), \cdots, f\left(\frac{p-1}{p}+\epsilon\right)\right)$
- $\mathcal{F}\left(\mathbf{f}_{p, 0}\right)[h]=p \sum_{n_{j}=h(\bmod p)} c_{j}, h=0,1,2, \cdots, p-1$
- $\mathcal{F}\left(\mathbf{f}_{p, \epsilon}\right)[h]=p \sum_{n_{j}=h(\bmod p)} c_{j} e^{2 \pi i \epsilon n_{j}}$
- $n_{j}=\frac{1}{2 \pi \epsilon} \operatorname{Arg}\left(\frac{\mathcal{F}\left(\mathbf{f}_{p, \epsilon}\right)[h]}{\mathcal{F}\left(f_{p, 0}\right)[h]}\right)=\frac{1}{2 \pi \epsilon} \operatorname{Arg}\left(\frac{p c_{j} e^{2 \pi i \epsilon n_{j}}}{p c_{j}}\right), c_{j}=\frac{1}{p} \mathcal{F}\left(\mathbf{f}_{p, 0}\right)[h]$ if there is no collision of frequencies.

Test for Collision

- If there is only one frequency n congruent to $h \bmod p$, then the following equation holds,
- $\frac{\mid \mathcal{F}\left(f_{p}, e\right)[h]}{\mid \mathcal{F}\left(f_{p}, 0\right)[h]}=1$.
- Otherwise, the equation does not hold for certain ϵ.
- Average-case time complexity: $\Theta(s \log s)$
- Average-case sampling complxity: $\Theta(s)$

2D Sparse Fourier Transforms

Figure: Process of the parallel projection method in 2D

Figure: Worst case scenario in 2D and solving it through the tilting method

Analysis of SFTs

Performance of the tilting method in 2D

Let $\mathbf{n}=\left(n_{1}, n_{2}\right) \in \mathcal{S} \subset\left[-\frac{N}{2}, \frac{N}{2}\right)^{2} \cap \mathbb{Z}^{2}$. If $\tan \theta=\frac{a}{b}$ such that $c>b>a$ are Pythagorean triples where $b>N$ and a are relative primes, then all $\left(c n_{1} \cos \theta-c n_{2} \sin \theta, c n_{1} \sin \theta+c n_{2} \cos \theta\right)$ rotated by θ does not collide with any other pair through the parallel projection. Thus, all rotated pairs can be identified by the parallel projection method.

```
- A finite series of rotations in 2D subspaces can be utilized to extend the tilting method
to the general higher dimensional setting.
- Furthermore, if the number of dimensions, D, gets larger, the probability that the
worst-case scenario happens converges to 0.
```

- $f(\mathbf{x})=\sum_{\mathrm{n}} c e^{2 \pi i n \cdot x}$
- $\left.c \in \mathbb{C}, n \in \Gamma-\frac{N}{2}, \frac{N}{2}\right)^{2} \cap \mathbb{Z}^{4}=\left(\left[-\frac{N}{2}, \frac{N}{2}\right)^{2} \cap \mathbb{Z}^{2}\right)^{2}$
$\left(n_{1}, n_{2}, n_{3}, n_{4}\right) \rightarrow\left(n_{1}+N n_{2}, n_{3}+N n_{4}\right)=:\left(\tilde{n}_{1}, \tilde{n}_{2}\right)$
- The bandwidth of each entry is increased so that the chance of collision from projection
decreased
- Shifting size ϵ should be smaller $\leq \frac{1}{N^{2}}$

Analysis of SFTs

Performance of the tilting method in 2D

Let $\mathbf{n}=\left(n_{1}, n_{2}\right) \in \mathcal{S} \subset\left[-\frac{N}{2}, \frac{N}{2}\right)^{2} \cap \mathbb{Z}^{2}$. If $\tan \theta=\frac{a}{b}$ such that $c>b>a$ are Pythagorean triples where $b>N$ and a are relative primes, then all $\left(c n_{1} \cos \theta-c n_{2} \sin \theta, c n_{1} \sin \theta+c n_{2} \cos \theta\right)$ rotated by θ does not collide with any other pair through the parallel projection. Thus, all rotated pairs can be identified by the parallel projection method.

- A finite series of rotations in 2D subspaces can be utilized to extend the tilting method to the general higher dimensional setting.
- Furthermore, if the number of dimensions, D, gets larger, the probability that the worst-case scenario happens converges to 0 .
- The bandwidth of each entry is increased so that the chance of collision from projection decreased
- Shifting size ϵ should be smaller $\leq \frac{1}{N^{2}}$

Analysis of SFTs

Performance of the tilting method in 2D

Let $\mathbf{n}=\left(n_{1}, n_{2}\right) \in \mathcal{S} \subset\left[-\frac{N}{2}, \frac{N}{2}\right)^{2} \cap \mathbb{Z}^{2}$. If $\tan \theta=\frac{a}{b}$ such that $c>b>a$ are Pythagorean triples where $b>N$ and a are relative primes, then all $\left(c n_{1} \cos \theta-c n_{2} \sin \theta, c n_{1} \sin \theta+c n_{2} \cos \theta\right)$ rotated by θ does not collide with any other pair through the parallel projection. Thus, all rotated pairs can be identified by the parallel projection method.

- A finite series of rotations in 2D subspaces can be utilized to extend the tilting method to the general higher dimensional setting.
- Furthermore, if the number of dimensions, D, gets larger, the probability that the worst-case scenario happens converges to 0 .
- The bandwidth of each entry is increased so that the chance of collision from projection decreased
- Shifting size ϵ should be smaller $\leq \frac{1}{N^{2}}$

Analysis of SFTs

Performance of the tilting method in 2D

Let $\mathbf{n}=\left(n_{1}, n_{2}\right) \in \mathcal{S} \subset\left[-\frac{N}{2}, \frac{N}{2}\right)^{2} \cap \mathbb{Z}^{2}$. If $\tan \theta=\frac{a}{b}$ such that $c>b>a$ are Pythagorean triples where $b>N$ and a are relative primes, then all $\left(c n_{1} \cos \theta-c n_{2} \sin \theta, c n_{1} \sin \theta+c n_{2} \cos \theta\right)$ rotated by θ does not collide with any other pair through the parallel projection. Thus, all rotated pairs can be identified by the parallel projection method.

- A finite series of rotations in 2D subspaces can be utilized to extend the tilting method to the general higher dimensional setting.
- Furthermore, if the number of dimensions, D, gets larger, the probability that the worst-case scenario happens converges to 0 .

Partial Unwrapping Method for 4D

- $f(\mathbf{x})=\sum_{\mathbf{n}} c e^{2 \pi i n \cdot x}$
- $c \in \mathbb{C}, \mathbf{n} \in\left[-\frac{N}{2}, \frac{N}{2}\right)^{4} \cap \mathbb{Z}^{4}=\left(\left[-\frac{N}{2}, \frac{N}{2}\right)^{2} \cap \mathbb{Z}^{2}\right)^{2}$
- $\left(n_{1}, n_{2}, n_{3}, n_{4}\right) \rightarrow\left(n_{1}+N n_{2}, n_{3}+N n_{4}\right)=:\left(\widetilde{n}_{1}, \widetilde{n}_{2}\right)$
- The bandwidth of each entry is increased so that the chance of collision from projection decreased.
- Shifting size ϵ should be smaller $\leq \frac{1}{N^{2}}$

Analysis of SFTs

Average-case runtime complexity

Assume $N \geq 5 s$ and there is no worst-case scenario. Let $T(s)$ denote the runtime of the parallel projection method on a random signal setting. Then $\mathbb{E}[T(s)]=\Theta(D s \log s)$ and

$$
\mathbb{P}[T(s)>\Theta(D s \log s)+t D s \log s] \leq 5^{-t}
$$

Average-case sampling complexity

Assume $N \geq 5 s$ and there is no worst-case scenario. Let $S(s)$ denote the number of samples used in the parallel projection method on a random signal setting.
Then $\mathbb{E}[S(s)]=\Theta(D s)$ and

$$
\mathbb{P}[S(s)>\Theta(D s)+t D s] \leq 5^{-t}
$$

Multiscale Algorithm for Noisy Data

- $\tilde{\mathbf{f}}_{p, \epsilon}^{w, y}[j]=\mathbf{f}_{p, \epsilon}^{w, y}[j]+z_{j}$ where z_{j} 's are i.i.d. complex Gaussian variables with mean 0 and variance σ^{2}.
- $\widehat{\widetilde{f}}_{p, \epsilon}^{w, y}[h]=\widehat{\mathbf{f}}_{p, \epsilon}^{w, y}[h]+\widehat{z}[h]$ where $\widehat{z}[h]=\sum_{j=0}^{p-1} z_{j} e^{-2 \pi i h j / p}$
- $\mathbf{E}\left[\widetilde{\mathbf{f}}_{p, 0}^{w, y}[h]\right]=\widehat{\mathbf{f}}_{p, 0}^{w, y}[h]$ and $\mathbf{E}\left[\widetilde{\mathbf{f}}_{p, 0}^{w, y}[h]-\left.\widehat{\mathbf{f}}_{p, 0}^{w, y}[h]\right|^{2}\right]=p \sigma^{2}$
- E $\left[\begin{array}{|c}\widetilde{\mathbf{f}}_{p, \epsilon}^{w, y}\end{array}[h]\right]=\widehat{\mathbf{f}}_{p, \epsilon}^{w, y}[h]$ and $\mathbf{E}\left[\widehat{\widetilde{\mathbf{f}}}_{p, \epsilon}^{w, y}[h]-\left.\widehat{\mathbf{f}}_{p, \epsilon}^{w, y}[h]\right|^{2}\right]=p \sigma^{2}$
- For a non-collision n_{y},

$$
\begin{aligned}
\frac{\widetilde{\mathbf{f}}_{p, \epsilon}^{w, y}}{\frac{\widetilde{\mathbf{f}}_{p, 0}^{w, y}}{w, y}[h]} & =\frac{\widehat{\mathbf{f}}_{p, 0}^{w, y}[h] e^{2 \pi i n_{y} \epsilon}+\mathcal{O}(\sigma \sqrt{p})}{\widehat{\mathbf{f}}_{p, 0}^{w, y}[h]+\mathcal{O}(\sigma \sqrt{p})} \\
& =e^{2 \pi i n_{y} \epsilon}+\mathcal{O}\left(\sigma / c_{\mathbf{n}} \sqrt{p}\right)
\end{aligned}
$$

$0\left\|\frac{1}{2 \pi} \operatorname{Arg}\left(\begin{array}{c}\substack{\approx_{p} w, y \\ \tilde{f}_{p, \epsilon}[h] \\ \tilde{\mathbf{f}}_{p, 0}, y}\end{array}\right)-n_{y} \epsilon\right\|_{\mathbb{Z}} \leq \mathcal{O}\left(\frac{\sigma}{\left|c_{n}\right| \sqrt{p}}\right)$

Multiscale Frequency Estimation

- $\epsilon_{0}<1 / N, \epsilon_{0} \tilde{n}_{y}=\mathbb{Z} \frac{1}{2 \pi} \operatorname{Arg}\left(\begin{array}{l}\widetilde{\mathfrak{f}}_{p, \epsilon_{0}}, y \\ \tilde{\tilde{\sim}}_{0}, y \\ \tilde{f}_{p, 0}[h]\end{array}\right)$
- $\tilde{n}_{y}=n_{y}(\bmod p)$
- $\epsilon_{1}>1 / N>\epsilon_{0}, b_{1}=\frac{1}{2 \pi} \operatorname{Arg}\binom{\widetilde{\boldsymbol{f}}_{p, \epsilon_{1}}^{w, y}[h]}{\widetilde{\mathfrak{f}}_{p, 0}^{w, y}[h]}$
- $b_{1} \approx \epsilon_{1} n_{y}\left(\bmod \left[-\frac{1}{2}, \frac{1}{2}\right)\right)$
- $\epsilon_{1}\left(n_{y}-\tilde{n}_{y}\right) \approx\left(b_{1}-\epsilon_{1} \tilde{n}_{y}\right)\left(\bmod \left[-\frac{1}{2}, \frac{1}{2}\right)\right)$
- $n_{y}-\left(\tilde{n}_{y}+\left(b_{1}-\epsilon_{1} \tilde{n}_{y}\right)\left(\bmod \left[-\frac{1}{2}, \frac{1}{2}\right)\right) / \epsilon_{1}\right)=\mathcal{O}\left(\frac{\sigma}{\epsilon_{1} \sqrt{p}}\right)$
- This error correction process is iterated with progressively larger shifts ϵ_{j}.

Multiscale Frequency Estimation

Let $n \in\left[-\frac{N}{2}, \frac{N}{2}\right)$. Let $0<\epsilon_{0}<\epsilon_{1}<\cdots<\epsilon_{m}$ and $b_{0}, b_{1}, \cdots, b_{m} \in \mathbb{R}$ such that

$$
\left\|\epsilon_{j} n-b_{j}\right\|_{\mathbb{Z}}<\delta, 0 \leq j \leq m
$$

where $0<\delta \leq \frac{1}{4}$. Assume that $\epsilon_{0} \leq \frac{1-2 \delta}{N}$ and $\beta_{j}:=\epsilon_{j} / \epsilon_{j-1} \leq(1-2 \delta) /(2 \delta)$. Then there exist $d_{0}, d_{1}, \cdots, d_{m} \in \mathbb{R}$, each computable from $\left\{\epsilon_{j}\right\}$ and $\left\{b_{j}\right\}$, such that

$$
|\widetilde{n}-n| \leq \frac{\delta}{\epsilon_{0}} \prod_{j=1}^{m} \beta_{j}^{-1} \text { where } \widetilde{n}:=\sum_{j=0}^{m} \frac{d_{j}}{\epsilon_{j}} .
$$

Corollary 1

Assume that in the above theorem we have $\beta_{j}=\beta$ where $\beta \leq(1-2 \delta) /(2 \delta)$, i.e., $\epsilon_{j}=\beta^{j} \epsilon_{0}$ for all j. Let $m \geq\left\lfloor\log _{\beta} \frac{2 \delta}{\epsilon_{0}}\right\rfloor+1$. Then

$$
|\widetilde{n}-n| \leq \frac{\delta}{\epsilon_{0}} \beta^{-m}<\frac{1}{2}
$$

Multiscale Approach for Noisy Samples

Average-case analysis of the multiscale approach

Let $f^{z}(\mathbf{x})=f(\mathbf{x})+z(\mathbf{x})$, where $\hat{f}(\mathbf{n})$ is s-sparse with all frequencies satisfying $\mathbf{n} \in \mathcal{S} \subset[-N / 2, N / 2)^{D} \cap \mathbb{Z}^{D}$ and not forming any worst case scenario, and z is complex i.i.d. Gaussian noise of variance σ^{2}. Moreover, suppose that $s>C\left(\beta(\beta+1) c_{\min } \sigma\right)^{2}$ for some constant C (chosen carefully so that some technical assumptions are satisfied). The multiscale parallel projection method, given N, D, s, β with $N>5 s$ and access to $f^{z}(\mathbf{x})$ returns a list of s pairs $\left(\hat{\mathbf{n}}, c_{\hat{n}}\right)$ such that (i) each $\hat{\mathbf{n}} \in \mathcal{S}$ and (ii) for each $\hat{\mathbf{n}}$, there is an $\mathbf{n} \in \mathcal{S}$ such that $\mathbf{n} \in \mathcal{S}$ with $\left|c_{\mathbf{n}}-c_{\hat{\mathbf{n}}}\right| \leq C \sigma / \sqrt{s}$. The average-case runtime and sampling complexity are

$$
\Theta(s D \log s \log N) \quad \text { and } \quad \Theta(s D \log N)
$$

respectively, over the class of random signals.

Numerics

Figure: Average samples and average runtime (nosieless)

Numerics

Figure: Average samples and average runtime (noisy)

Numerics

Figure: Average ℓ^{1} error divided by s

Thanks for Listening!

Questions?

