Sparse Fourier Transforms, Generalizations, and Extensions

Mark Iwen

Michigan State University
Dept. of Mathematics, and
Dept. of Computational Math, Science and Engineering (CMSE)

March 1 ${ }^{\text {st }}, 2019$

Work with RuoChuan Zhang \& Sami Merhi ...

Figure: RuoChuan Zhang (Now @ Research Division of Delphi Automotive), and Sami Merhi (Expected Graduation in Summer 2019)

Compressive Sensing [Candès, Donoho, Tao, ...]

The General Compressive Sensing Framework

Recover $\mathbf{x} \in \mathcal{H}$ from an underdetermined set of linear measurements... by assuming that it is close to a geometrically simple subset $\mathcal{M} \subset \mathcal{H}$.
Some Fundamental Questions: Which linear measurements (for which \mathcal{H} and \mathcal{M})? What
 computationally tractable numerical methods exist (for which $\mathcal{H} \& \mathcal{M}$)?

- $\mathcal{H}=\mathbb{R}^{N}, \mathcal{M}=\left\{\mathbf{y} \in \mathbb{R}^{N} \mid\|\mathbf{y}\|_{0} \leq s\right\}, s \ll N$
- $\mathcal{H}=\mathbb{R}^{N}, \mathcal{M} \subset \mathbb{R}^{N}$ has small Gaussian width, or is a smooth low dimensional submanifold of \mathbb{R}^{N} with bounded reach, \ldots
- $\mathcal{H}=\mathbb{R}^{N \times N}, \mathcal{M}=\left\{X \in \mathbb{R}^{N \times N} \mid \operatorname{rank}(X)=s\right\}, s \ll N$
- TODAY: $\mathcal{H}=L^{2}\left([0,2 \pi]^{D}, \mathbb{C}\right), \mathcal{M}=\left\{f \in \mathcal{H} \mid\|\hat{f}\|_{0} \leq s\right\}, s \ll \omega_{\max }$

Where Do Fourier Sparse Signals Appear?

Motivated by

Applications involving wideband signals that are locally frequency sparse in time [see work by Baranuik, Duarte, Hassanie, Tropp, ...].

- Frequency hopping modulation schemes [Lamarr et al., 1941], and wideband spectrum sensing [Hassanie et al., 2014]
- Faster GPS [Hassanieh et. al., 2012]
- Spectral methods for multiscale problems [Daubechies et al., 2007]
- MR Imaging of implicitly sparse specimens [Andronesi et al., 2014]

Notation and Setup

Approximate $f:[0,2 \pi] \mapsto \mathbb{C}$ by a Sparse Trig. Polynomial

$$
f(x) \approx \sum_{j=1}^{s} \hat{f}\left(\omega_{j}\right) \cdot \mathbb{e}^{\mathrm{i} x \omega_{j}} \in \mathcal{M}, \quad \Omega:=\left\{\omega_{1}, \ldots, \omega_{s}\right\} \subset\left(-\frac{N}{2}, \frac{N}{2}\right] \bigcap \mathbb{Z}
$$

- In discrete setting we let $f:[0,2 \pi] \mapsto \mathbb{C}$ be the continuous degree $\frac{N}{2}$ trigonometric polynomial interpolant of the given data $\mathbf{f} \in \mathbb{C}^{N}$.
- We compute point samples, $\mathbf{y} \in \mathbb{C}^{m}$, with $y_{j}=f\left(x_{j}\right)+n_{j}$ for well chosen unequally spaced $x_{1}, \ldots, x_{m} \in[0,2 \pi]$.
- The additive evaluation errors, n_{j}, form the entries of $\mathbf{n} \in \mathbb{C}^{m}$.
- $\hat{\mathbf{f}} \in \mathbb{C}^{N}$ contains nonzero entries of \hat{f} for freqs $\in\left(-\frac{N}{2}, \frac{N}{2}\right] \cap \mathbb{Z}$.
- $\hat{\mathbf{f}}_{s}^{\text {opt }} \in \mathbb{C}^{N}$, a best s-term approx. to $\hat{\mathbf{f}}=\mathcal{F}_{N} \mathbf{f} \in \mathbb{C}^{N}$ (the DFT of \mathbf{f}).

Theorem: A Discrete Result [l., S. Merhi, R. Zhang, 2017]

Let $N \in \mathbb{N}$, $s \in[2, N] \cap \mathbb{N}, 1 \leq r \leq \frac{N}{36}$, and $\mathbf{f} \in \mathbb{C}^{N}$. There exists an algorithm that will always deterministically return an s-sparse vector $\mathbf{v} \in \mathbb{C}^{N}$ satisfying

$$
\begin{equation*}
\|\hat{\mathbf{f}}-\mathbf{v}\|_{2} \leq\left\|\hat{\mathbf{f}}-\hat{\mathbf{f}}_{s}^{\mathrm{opt}}\right\|_{2}+\frac{33}{\sqrt{s}} \cdot\left\|\hat{\mathbf{f}}-\hat{\mathbf{f}}_{s}^{\mathrm{opt}}\right\|_{1}+198 \sqrt{s}\|\mathbf{f}\|_{\infty} N^{-r} \tag{1}
\end{equation*}
$$

in just $\mathcal{O}\left(\frac{s^{2} \cdot r^{\frac{3}{2}} \cdot \log }{\log (s)}\right)$-time when given access to f. If returning an s-sparse vector $\mathbf{v} \in \mathbb{C}^{N}$ that satisfies (1) for each \mathbf{f} with probability at least $(1-\delta) \in[2 / 3,1)$ is sufficient, a Monte Carlo algorithm also exists which will do so in just $\mathcal{O}\left(s \cdot r^{\frac{3}{2}} \cdot \log ^{\frac{9}{2}}(N) \cdot \log \left(\frac{N}{\delta}\right)\right)$-time.

- Proof Idea: Convolve the trig. polynomial interpolant of \mathbf{f} with a well chosen periodic Gaussian, and then apply \mathcal{A} from the previous theorems for inf. dim. setting [l., 2013] to the resulting function g.

Publicly Available Codes: Fixed $N=2^{26}$

- https://sourceforge.net/projects/aafftannarborfa/

Basic Idea of $[1 ., 2013]$ in the case $\left\|\mathcal{F}_{N} \mathbf{f}\right\|_{0}=1$

- Example: $\mathcal{B} \in\{0,1\}^{5 \times 6}, \mathcal{F}_{6} \mathbf{f} \in \mathbb{C}^{6}$ contains 1 nonzero entry. Consider $\mathcal{B} \mathcal{F}_{6} \mathbf{f}$:

- Reconstruct entry index via Chinese Remainder Theorem - Two estimates of the entry's value

SAVED ONE INNER PRODUCT!

Basic Idea of $[1 ., 2013]$ in the case $\left\|\mathcal{F}_{N} \mathbf{f}\right\|_{0}=1$

- Example: $\mathcal{B} \in\{0,1\}^{5 \times 6}, \mathcal{F}_{6} \mathbf{f} \in \mathbb{C}^{6}$ contains 1 nonzero entry. Consider $\mathcal{B} \mathcal{F}_{6} \mathbf{f}$:

$$
\begin{aligned}
& \equiv 0 \bmod 2 \\
& \equiv 1 \bmod 2 \\
& \equiv 0 \bmod 3 \\
& \equiv 1 \bmod 3 \\
& \equiv 2 \bmod 3
\end{aligned}\left(\begin{array}{llllll}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
0 \\
0 \\
3.5 \\
0 \\
0 \\
0
\end{array}\right)
$$

- Reconstruct entry index via Chinese Remainder Theorem

Two estimates of the entry's value

Basic Idea of $[1 ., 2013]$ in the case $\left\|\mathcal{F}_{N} \mathbf{f}\right\|_{0}=1$

- Example: $\mathcal{B} \in\{0,1\}^{5 \times 6}, \mathcal{F}_{6} \mathbf{f} \in \mathbb{C}^{6}$ contains 1 nonzero entry. Consider $\mathcal{B} \mathcal{F}_{6} \mathbf{f}$:
$\left(\begin{array}{llllll}1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1\end{array}\right)\left(\begin{array}{c}0 \\ 0 \\ 3.5 \\ 0 \\ 0 \\ 0\end{array}\right)=\left(\begin{array}{c}3.5 \\ 0 \\ 0 \\ 0 \\ 3.5\end{array}\right) \Leftarrow$ Index $\equiv 0 \bmod 2$
- Reconstruct entry index via Chinese Remainder Theorem Two estimates of the entry's value

Basic Idea of $[1 ., 2013]$ in the case $\left\|\mathcal{F}_{N} \mathbf{f}\right\|_{0}=1$

- Example: $\mathcal{B} \in\{0,1\}^{5 \times 6}, \mathcal{F}_{6} \mathbf{f} \in \mathbb{C}^{6}$ contains 1 nonzero entry. Consider $\mathcal{B} \mathcal{F}_{6} \mathbf{f}$:

$$
\left(\begin{array}{llllll}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
0 \\
0 \\
3.5 \\
0 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
3.5 \\
0 \\
0 \\
0 \\
3.5
\end{array}\right) \Leftarrow \text { Index } \equiv 0 \bmod 2
$$

- Reconstruct entry index via Chinese Remainder Theorem
- Two estimates of the entry's value

Basic Idea of $[1 ., 2013]$ in the case $\left\|\mathcal{F}_{N} \mathbf{f}\right\|_{0}=1$

- Example: $\mathcal{B} \in\{0,1\}^{5 \times 6}, \mathcal{F}_{6} \mathbf{f} \in \mathbb{C}^{6}$ contains 1 nonzero entry. Consider $\mathcal{B} \mathcal{F}_{6} \mathbf{f}$:

$$
\left(\begin{array}{llllll}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
0 \\
0 \\
3.5 \\
0 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
3.5 \\
0 \\
0 \\
0 \\
3.5
\end{array}\right) \Leftarrow \text { Index } \equiv 0 \bmod 2
$$

- Reconstruct entry index via Chinese Remainder Theorem
- Two estimates of the entry's value

SAVED ONE INNER PRODUCT!

Basic Idea of $[1 ., 2013]$ in the case $\left\|\mathcal{F}_{N} \mathbf{f}\right\|_{0}=1$

$$
\left(\begin{array}{llllll}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
0 \\
0 \\
3.5 \\
0 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
3.5 \\
0 \\
0 \\
0 \\
3.5
\end{array}\right)
$$

- We only utilize 4 entries from $\mathbf{f} \in \mathbb{C}^{6}$
- Computed Efficiently using 2 FFTs
- Reconstruct frequency index via Chinese Remainder Theorem
- Two estimates of nonzero Fourier coefficient

Basic Idea of $[1 ., 2013]$ in the case $\left\|\mathcal{F}_{N} \mathbf{f}\right\|_{0}=1$

$$
\left(\begin{array}{cccccc}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right) \cdot \mathcal{F}_{6} \mathcal{F}_{6}^{-1} \cdot\left(\begin{array}{c}
0 \\
0 \\
3.5 \\
0 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
3.5 \\
0 \\
0 \\
0 \\
3.5
\end{array}\right)
$$

- We only utilize 4 entries from $\mathbf{f} \in \mathbb{C}^{6}$
- Computed Efficiently using 2 FFTs
- Reconstruct frequency index via Chinese Remainder Theorem
- Two estimates of nonzero Fourier coefficient

Basic Idea of [I., 2013] in the case $\left\|\mathcal{F}_{N} \mathbf{f}\right\|_{0}=1$

$$
\left(\left(\begin{array}{llllll}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right) \mathcal{F}_{6}\right) \cdot\left(\mathcal{F}_{6}^{-1}\left(\begin{array}{c}
0 \\
0 \\
3.5 \\
0 \\
0 \\
0
\end{array}\right)\right)=\left(\begin{array}{c}
3.5 \\
0 \\
0 \\
0 \\
3.5
\end{array}\right)
$$

- We only utilize 4 entries from $f \in \mathbb{C}^{6}$
- Computed Efficiently using 2 FFTs
- Reconstruct frequency index via Chinese Remainder Theorem
- Two estimates of nonzero Fourier coefficient

Basic Idea of $[1 ., 2013]$ in the case $\left\|\mathcal{F}_{N} \mathbf{f}\right\|_{0}=1$

$$
\left(\begin{array}{cccccc}
\sqrt{\frac{3}{2}} & 0 & 0 & \sqrt{\frac{3}{2}} & 0 & 0 \\
\sqrt{\frac{3}{2}} & 0 & 0 & -\sqrt{\frac{3}{2}} & 0 & 0 \\
* & 0 & * & 0 & * & 0 \\
* & 0 & * & 0 & * & 0 \\
* & 0 & * & 0 & * & 0
\end{array}\right) \cdot\left(\mathcal{F}_{6}^{-1}\left(\begin{array}{c}
0 \\
0 \\
3.5 \\
0 \\
0 \\
0
\end{array}\right)\right)=\left(\begin{array}{c}
3.5 \\
0 \\
0 \\
0 \\
3.5
\end{array}\right)
$$

- We only utilize 4 entries from $\mathbf{f} \in \mathbb{C}^{6}$
- Computed Efficiently using 2 FFTs
- Reconstruct frequency index via Chinese Remainder Theorem
- Two estimates of nonzero Fourier coefficient

Basic Idea of $[1 ., 2013]$ in the case $\left\|\mathcal{F}_{N} \mathbf{f}\right\|_{0}=1$

$$
\left(\begin{array}{cccccc}
\sqrt{\frac{3}{2}} & 0 & 0 & \sqrt{\frac{3}{2}} & 0 & 0 \\
\sqrt{\frac{3}{2}} & 0 & 0 & -\sqrt{\frac{3}{2}} & 0 & 0 \\
* & 0 & * & 0 & * & 0 \\
* & 0 & * & 0 & * & 0 \\
* & 0 & * & 0 & * & 0
\end{array}\right) \cdot\left(\mathcal{F}_{6}^{-1}\left(\begin{array}{c}
0 \\
0 \\
3.5 \\
0 \\
0 \\
0
\end{array}\right)\right)=\left(\begin{array}{c}
3.5 \\
0 \\
0 \\
0 \\
3.5
\end{array}\right)
$$

- We only utilize 4 entries from $\mathbf{f} \in \mathbb{C}^{6}$
- Computed Efficiently using 2 FFTs
- Reconstruct frequency index via Chinese Remainder Theorem
- Two estimates of nonzero Fourier coefficient

Basic Idea of $[1 ., 2013]$ in the case $\left\|\mathcal{F}_{N} \mathbf{f}\right\|_{0}=1$

$$
\left.\left(\begin{array}{c}
\sqrt{3} \cdot \mathcal{F}_{2} \cdot\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
\sqrt{2} \cdot \mathcal{F}_{3} \cdot\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right) \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)
\end{array}\right) \cdot\left(\begin{array}{c}
0 \\
0 \\
3.5 \\
0 \\
0 \\
0
\end{array}\right)\right)=\left(\begin{array}{c}
3.5 \\
0 \\
0 \\
0 \\
3.5
\end{array}\right)
$$

- We only utilize 4 entries from $f \in \mathbb{C}^{6}$
- Computed Efficiently using 2 FFTs
- Reconstruct frequency index via Chinese Remainder Theorem
- Two estimates of nonzero Fourier coefficient

Basic Idea of $[1 ., 2013]$ in the case $\left\|\mathcal{F}_{N} \mathbf{f}\right\|_{0}=1$

- We only utilize 4 entries from $\mathbf{f} \in \mathbb{C}^{6}$
- Computed Efficiently using 2 FFTs
- Reconstruct frequency index via Chinese Remainder Theorem
- Two estimates of nonzero Fourier coefficient

Basic Idea of $[1 ., 2013]$ in the case $\left\|\mathcal{F}_{N} \mathbf{f}\right\|_{0}=1$

- We only utilize 4 entries from $f \in \mathbb{C}^{6}$
- Computed Efficiently using 2 FFTs
- Reconstruct frequency index via Chinese Remainder Theorem
- Two estimates of nonzero Fourier coefficient

Basic Idea of $[1 ., 2013]$ in the case $\left\|\mathcal{F}_{N} \mathbf{f}\right\|_{0}=1$

$$
\left(\begin{array}{c}
\sqrt{3} \cdot \mathcal{F}_{2} \cdot\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
\sqrt{2} \cdot \mathcal{F}_{3} \cdot\left(\begin{array}{llll}
0 & 1 & 0 & 0
\end{array}\right) \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)
\end{array}\right) \cdot\left(\mathcal{F}_{6}^{-1}\left(\begin{array}{c}
0 \\
0 \\
3.5 \\
0 \\
0 \\
0
\end{array}\right)\right)=\left(\begin{array}{c}
3.5 \\
0 \\
0 \\
0 \\
3.5
\end{array}\right)
$$

- We only utilize 4 entries from $f \in \mathbb{C}^{6}$
- Computed Efficiently using 2 FFTs
- Reconstruct frequency index via Chinese Remainder Theorem
- Two estimates of nonzero Fourier coefficient

> IGNORED TWO ENTRIES OF f!

Extensions: Compressed Sensing for Parametric PDE

- Setup: Given PDE $A(\mathbf{x}) u=g, \mathbf{x} \in[0,2 \pi]^{D}$ parameters, approximate Quantity of Interest (Qol) $f(\mathbf{x})=G u(\mathbf{x})$ (real valued) as a function of \mathbf{x}.
- Core observation: Qol $f(\mathbf{x})$ is approximately sparse in appropriate (truncated) product basis T

$$
f(\mathbf{x}) \approx \sum_{\mathbf{n} \in \Omega} c_{\mathbf{n}} T_{\mathbf{n}}(\mathbf{x})
$$

that is, each $\mathbf{n} \in I_{D}:=\{0, \ldots, N-1\}^{D}$, indexes a basis function $T_{\mathbf{n}}$ and for $\mathbf{n} \in \Omega \subset I_{D}$ with $s=|\Omega|$ small, $c_{\mathbf{n}} \in \mathbb{C}$ is the coefficient.

- More concretely, we consider basis functions, indexed by $\mathbf{n} \in I_{D}$, of the form

$$
T_{\mathbf{n}}(\mathbf{x})=\prod_{j=1}^{D} T_{j ; n_{j}}\left(x_{j}\right)
$$

where each $T_{j ; n_{j}}$ is a 1-dim basis function (e.g., $T_{j ; n_{j}}(x):=\mathbb{e}^{\mathrm{i} n_{j} x}$, orthogonal polynomials, ...).

Extensions: Compressed Sensing for Parametric PDE

- Recall our goal: Approximate $f:[0,2 \pi]^{D} \rightarrow \mathbb{R}$ sparse in $\left\{T_{\mathrm{n}}\right\}$.
- Samples: Each PDE solve yields $\approx f\left(\mathbf{x}_{j}\right)$ for some fixed set of parameters \mathbf{x}_{j} (of our choosing).
- In matrix form: Recover s-sparse ch from

$$
\begin{aligned}
\mathbf{f}=\left(\begin{array}{c}
f\left(\mathbf{x}_{1}\right) \\
f\left(\mathbf{x}_{2}\right) \\
\vdots \\
f\left(\mathbf{x}_{m}\right)
\end{array}\right) & =\left(\begin{array}{ccccc}
T_{\mathbf{n}_{1}}\left(\mathbf{x}_{1}\right) & T_{\mathbf{n}_{2}}\left(\mathbf{x}_{1}\right) & \cdots & \cdots & T_{\mathbf{n}_{N^{D}}}\left(\mathbf{x}_{1}\right) \\
T_{\mathbf{n}_{1}}\left(\mathbf{x}_{2}\right) & T_{\mathbf{n}_{2}}\left(\mathbf{x}_{2}\right) & \cdots & \cdots & T_{\mathbf{n}_{N^{D}}}\left(\mathbf{x}_{2}\right) \\
\vdots & \vdots & & \ddots & \vdots \\
T_{\mathbf{n}_{1}}\left(\mathbf{x}_{m}\right) & T_{\mathbf{n}_{2}}\left(\mathbf{x}_{m}\right) & \cdots & \cdots & T_{\mathbf{n}_{N^{D}}}\left(\mathbf{x}_{m}\right)
\end{array}\right) \mathbf{c} \\
& =: \mathbf{c}
\end{aligned}
$$

- Strategy [Rauhut, Schwab, Adcock, Webster, ...]: Ensure, e.g., that $\Phi \in \mathbb{R}^{m \times N^{D}}$ has the Restricted Isometry Property (RIP) s.t.

$$
\max _{\mathcal{S} \subset I_{D},|\mathcal{S}| \leq s}\left\|\Phi_{\mathcal{S}}^{*} \Phi_{\mathcal{S}}-\mathrm{Id}\right\|_{2 \rightarrow 2}
$$

is small. Then, appeal to compressive sensing recovery methods.

Motivation: Compressed Sensing for Parametric PDEs

- Strategy [Rauhut, Schwab, Adcock, Webster, ...]:
- Compute $f\left(\mathbf{x}_{j}\right)$ for $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{m}$ (random?)

Computational cost: $\quad m \times$ (cost of PDE solve).

- Recover the $\mathbf{c} \in \mathbb{C}^{N^{D}}$ using ℓ_{1} minimization, OMP, CoSaMP, \ldots

Computational cost: poly $\left(N^{D}\right)$ - or poly $\left((\log (N))^{D}\right)$ using, e.g., hyperbolic cross assumptions to constrain the overall basis size.

- Prototypical desired result [Rauhut, Schwab, Adcock, Webster, ...]: Recovery guarantees if $m \gtrsim s$ polylog $\left(N^{D}, s\right)$.
The Goal: Approximate $f:[0,2 \pi]^{D} \mapsto \mathbb{C}$ using as few evaluations as possible, as quickly as possible... in $\mathcal{O}\left(D^{c} \ldots\right)$-time.

Motivation: Compressed Sensing for Parametric PDEs

- Strategy [Rauhut, Schwab, Adcock, Webster, ...]:
- Compute $f\left(\mathbf{x}_{j}\right)$ for $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{m}$ (random?)

Computational cost: $\quad m \times$ (cost of PDE solve).

- Recover the $\mathbf{c} \in \mathbb{C}^{N^{D}}$ using ℓ_{1} minimization, OMP, CoSaMP, \ldots

Computational cost: poly $\left(N^{D}\right)$ - or poly $\left((\log (N))^{D}\right)$ using, e.g., hyperbolic cross assumptions to constrain the overall basis size.

- Prototypical desired result [Rauhut, Schwab, Adcock, Webster, ...]: Recovery guarantees if $m \gtrsim s$ polylog $\left(N^{D}, s\right)$.

The Goal: Approximate $f:[0,2 \pi]^{D} \mapsto \mathbb{C}$ using as few evaluations as possible, as quickly as possible... in $\mathcal{O}\left(D^{c} \ldots\right)$-time.

Challenge: Can we mitigate curse of dimensionality in last step?

CoSaMP [Needell, Tropp] for General Product Bases

$$
\text { (Recall: } \mathbf{f}=\Phi \mathbf{c}, \mathbf{f} \in \mathbb{C}^{m}, \phi \in \mathbb{C}^{m \times N^{D}}, \mathbf{c} \in \mathbb{C}^{N^{D}} s \text {-sparse) }
$$

Algorithm $1 \operatorname{CoSaMP}(\Phi, \mathbf{f}, s)$ recovery algorithm

1: $\mathbf{c}^{0}=\mathbf{0}$
2: $\mathbf{v} \leftarrow \mathbf{f}$
3: $k \leftarrow 0$
4: repeat
5: $\quad k \leftarrow k+1$
6: $\quad \mathbf{W} \leftarrow \Phi^{*} \mathbf{v}$
7: $\quad \mathcal{S} \leftarrow \operatorname{supp}\left(\mathbf{w}_{2 s}\right)$
8: $\quad T \leftarrow \mathcal{S} \cup \operatorname{supp}\left(\mathbf{c}^{k-1}\right)$
9: $\quad \mathbf{a}_{T} \leftarrow \Phi_{T}^{\dagger} \mathbf{f}$
10: $\quad \mathbf{c}^{k} \leftarrow \mathbf{a}_{s}^{\text {opt }}$
11: $\quad \mathbf{V} \leftarrow \mathbf{f}-\Phi \mathbf{c}^{k}$
\{Trivial intitial approximation\} \{Current samples=input samples\}
\{Form signal proxy\} \{Identify large components\} \{merge supports\} \{Signal estimation by least-squares\} \{Prune to obtain next approximation\} \{Update current samples\}

12: until halting criterion true

Numerics: Fourier Basis

(a)

(b)

Figure: Fourier basis, $N=20, D \in\{5,10,15,20, \cdots, 75\}, s=5$. Reconstruction errors in $\ell^{2} \sim 10^{-15}$.

- Standard compressive sensing methods would require more bytes of memory than there are atoms in the universe in order to store their intermediate solutions when $D=75 \ldots$.

Thank You! Some other great talks coming up. . .

- Sina Bittens: Faster sparse FFTs for functions with structured support. For example, frequencies confined to a few (a priori unknown) bands.
- Toni Volkmer, and Bosu Choi: More on (Sparse) Fourier transforms in high dimensions!

Post Doc Position Available!

Email if interested (markiwen@math.msu.edu)

