Sparse Fourier Transforms, Generalizations, and Extensions

Mark Iwen

Michigan State University

Dept. of Mathematics, and Dept. of Computational Math, Science and Engineering (CMSE)

March 1st, 2019

M.A. Iwen (MSU)

Sparse Fourier Transforms

March 1st, 2019 1 / 15

3 + 4 = +

< 6 b

Work with RuoChuan Zhang & Sami Merhi

Figure: RuoChuan Zhang (Now @ Research Division of Delphi Automotive), and Sami Merhi (Expected Graduation in Summer 2019)

3 > < 3 >

4 6 1 1 4

Compressive Sensing [Candès, Donoho, Tao, ...]

The General Compressive Sensing Framework

Recover $\mathbf{x} \in \mathcal{H}$ from an underdetermined set of linear measurements...

by assuming that it is close to a geometrically simple subset $\mathcal{M} \subset \mathcal{H}$.

Some Fundamental Questions: Which linear measurements (for which \mathcal{H} and \mathcal{M})? What computationally tractable numerical methods exist (for which $\mathcal{H} \& \mathcal{M}$)?

•
$$\mathcal{H} = \mathbb{R}^N, \, \mathcal{M} = \left\{ \mathbf{y} \in \mathbb{R}^N \mid \|\mathbf{y}\|_0 \le s \right\}, \, s \ll N$$

• $\mathcal{H} = \mathbb{R}^N$, $\mathcal{M} \subset \mathbb{R}^N$ has small Gaussian width, or is a smooth low dimensional submanifold of \mathbb{R}^N with bounded reach, ...

•
$$\mathcal{H} = \mathbb{R}^{N \times N}, \ \mathcal{M} = \{X \in \mathbb{R}^{N \times N} \mid \operatorname{rank}(X) = s\}, \ s \ll N$$

• TODAY: $\mathcal{H} = L^2([0, 2\pi]^D, \mathbb{C}), \ \mathcal{M} = \left\{ f \in \mathcal{H} \mid \left\| \hat{f} \right\|_0 \le s \right\}, \ s \ll \omega_{\max}$

Where Do Fourier Sparse Signals Appear?

Motivated by

Applications involving wideband signals that are locally frequency sparse in time [see work by Baranuik, Duarte, Hassanie, Tropp, ...].

- Frequency hopping modulation schemes [Lamarr et al., 1941], and wideband spectrum sensing [Hassanie et al., 2014]
- Faster GPS [Hassanieh et. al., 2012]
- Spectral methods for multiscale problems [Daubechies et al., 2007]
- MR Imaging of implicitly sparse specimens [Andronesi et al., 2014]

Notation and Setup

Approximate $f:[0,2\pi]\mapsto \mathbb{C}$ by a Sparse Trig. Polynomial

$$f(x) \approx \sum_{j=1}^{s} \hat{f}(\omega_j) \cdot e^{ix\omega_j} \in \mathcal{M}, \quad \Omega := \{\omega_1, \dots, \omega_s\} \subset \left(-\frac{N}{2}, \frac{N}{2}\right] \bigcap \mathbb{Z}$$

- In discrete setting we let $f : [0, 2\pi] \mapsto \mathbb{C}$ be the continuous degree $\frac{N}{2}$ trigonometric polynomial interpolant of the given data $\mathbf{f} \in \mathbb{C}^{N}$.
- We compute point samples, $\mathbf{y} \in \mathbb{C}^m$, with $y_j = f(x_j) + n_j$ for well chosen unequally spaced $x_1, \ldots, x_m \in [0, 2\pi]$.
- The additive evaluation errors, n_i , form the entries of $\mathbf{n} \in \mathbb{C}^m$.
- $\hat{\mathbf{f}} \in \mathbb{C}^N$ contains nonzero entries of \hat{f} for freqs $\in \left(-\frac{N}{2}, \frac{N}{2}\right] \cap \mathbb{Z}$.

• $\hat{\mathbf{f}}_s^{\text{opt}} \in \mathbb{C}^N$, a best *s*-term approx. to $\hat{\mathbf{f}} = \mathcal{F}_N \mathbf{f} \in \mathbb{C}^N$ (the DFT of \mathbf{f}).

Image: Image:

Theorem: A Discrete Result [I., S. Merhi, R. Zhang, 2017]

Let $N \in \mathbb{N}$, $s \in [2, N] \cap \mathbb{N}$, $1 \le r \le \frac{N}{36}$, and $\mathbf{f} \in \mathbb{C}^N$. There exists an algorithm that will always deterministically return an *s*-sparse vector $\mathbf{v} \in \mathbb{C}^N$ satisfying

$$\left\|\hat{\mathbf{f}} - \mathbf{v}\right\|_{2} \leq \left\|\hat{\mathbf{f}} - \hat{\mathbf{f}}_{s}^{\text{opt}}\right\|_{2} + \frac{33}{\sqrt{s}} \cdot \left\|\hat{\mathbf{f}} - \hat{\mathbf{f}}_{s}^{\text{opt}}\right\|_{1} + 198\sqrt{s} \left\|\mathbf{f}\right\|_{\infty} N^{-r}$$
(1)

in just $\mathcal{O}\left(\frac{s^2 \cdot r^{\frac{3}{2}} \cdot \log^{\frac{11}{2}}(N)}{\log(s)}\right)$ -time when given access to **f**. If returning an *s*-sparse vector $\mathbf{v} \in \mathbb{C}^N$ that satisfies (1) for each **f** with probability at least $(1 - \delta) \in [2/3, 1)$ is sufficient, a Monte Carlo algorithm also exists which will do so in just $\mathcal{O}\left(s \cdot r^{\frac{3}{2}} \cdot \log^{\frac{9}{2}}(N) \cdot \log\left(\frac{N}{\delta}\right)\right)$ -time.

• **Proof Idea:** Convolve the trig. polynomial interpolant of **f** with a well chosen periodic Gaussian, and then apply \mathcal{A} from the previous theorems for inf. dim. setting [I., 2013] to the resulting function g.

M.A. Iwen (MSU)

Publicly Available Codes: Fixed $N = 2^{26}$

• **Example:** $\mathcal{B} \in \{0, 1\}^{5 \times 6}$, $\mathcal{F}_6 f \in \mathbb{C}^6$ contains 1 nonzero entry. Consider $\mathcal{BF}_6 f$:

- Reconstruct entry index via Chinese Remainder Theorem
- Two estimates of the entry's value

SAVED ONE INNER PRODUCT!

IVI.A. IWEII (IVISU) Sparse	M.A. Iwen	(MSU)	Sparse
-----------------------------	-----------	-------	--------

• **Example:** $\mathcal{B} \in \{0, 1\}^{5 \times 6}$, $\mathcal{F}_6 f \in \mathbb{C}^6$ contains 1 nonzero entry. Consider $\mathcal{BF}_6 f$:

Reconstruct entry index via Chinese Remainder Theorem

Two estimates of the entry's value

SAVED ONE INNER PRODUCT!

M.A. Iwen (I	MSU)
--------------	------

• **Example:** $\mathcal{B} \in \{0, 1\}^{5 \times 6}$, $\mathcal{F}_6 f \in \mathbb{C}^6$ contains 1 nonzero entry. Consider $\mathcal{BF}_6 f$:

$$\begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 3.5 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 3.5 \\ 0 \\ 0 \\ 0 \\ 3.5 \end{pmatrix} \Leftrightarrow \text{Index} \equiv 0 \mod 2$$

Reconstruct entry index via Chinese Remainder Theorem

Two estimates of the entry's value

SAVED ONE INNER PRODUCT!

M.A.	lwen (MSU)

• **Example:** $\mathcal{B} \in \{0, 1\}^{5 \times 6}$, $\mathcal{F}_6 f \in \mathbb{C}^6$ contains 1 nonzero entry. Consider $\mathcal{B}\mathcal{F}_6 f$:

$$\begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 3.5 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 3.5 \\ 0 \\ 0 \\ 0 \\ 3.5 \end{pmatrix} \iff \text{Index} \equiv 0 \mod 2$$

Reconstruct entry index via Chinese Remainder Theorem

Two estimates of the entry's value

SAVED ONE INNER PRODUCT!

M.A. Iwen (MSU)

ヨト イヨト ニヨ

A D b 4 B b 4

• **Example:** $\mathcal{B} \in \{0, 1\}^{5 \times 6}$, $\mathcal{F}_6 f \in \mathbb{C}^6$ contains 1 nonzero entry. Consider $\mathcal{B}\mathcal{F}_6 f$:

$$\begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 3.5 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 3.5 \\ 0 \\ 0 \\ 0 \\ 3.5 \end{pmatrix} \iff \text{Index} \equiv 0 \mod 2$$

Reconstruct entry index via Chinese Remainder Theorem

Two estimates of the entry's value

SAVED ONE INNER PRODUCT!

	M.A.	lwen ((MSU)
--	------	--------	-------

- $\bullet\,$ We only utilize 4 entries from $\textbf{f}\in\mathbb{C}^6$
- Computed Efficiently using 2 FFTs
- Reconstruct frequency index via Chinese Remainder Theorem
- Two estimates of nonzero Fourier coefficient

IGNORED TWO ENTRIES OF f!

M.A.	lwen	(MSU)

BAR 4 BA

$$\begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix} \cdot \mathcal{F}_6 \mathcal{F}_6^{-1} \cdot \begin{pmatrix} 0 \\ 0 \\ 3.5 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 3.5 \\ 0 \\ 0 \\ 0 \\ 3.5 \end{pmatrix}$$

- $\bullet\,$ We only utilize 4 entries from $\textbf{f}\in\mathbb{C}^6$
- Computed Efficiently using 2 FFTs
- Reconstruct frequency index via Chinese Remainder Theorem
- Two estimates of nonzero Fourier coefficient

IGNORED TWO ENTRIES OF f!

M.A. Iwen (N	ISU)
--------------	------

BAR 4 BA

- We only utilize 4 entries from $\textbf{f} \in \mathbb{C}^6$
- Computed Efficiently using 2 FFTs
- Reconstruct frequency index via Chinese Remainder Theorem
- Two estimates of nonzero Fourier coefficient

IGNORED TWO ENTRIES OF f!

M.A. Iwen (MSU)
-------------	------

∃ ► < ∃ ►</p>

- We only utilize 4 entries from $\mathbf{f} \in \mathbb{C}^6$
- Computed Efficiently using 2 FFTs
- Reconstruct frequency index via Chinese Remainder Theorem
- Two estimates of nonzero Fourier coefficient

IGNORED TWO ENTRIES OF f!

M.A. Iwen (MSU)	M.A.	lwen	(MSU)
-----------------	------	------	-------

$\bullet\,$ We only utilize 4 entries from $f\in \mathbb{C}^6$

- Computed Efficiently using 2 FFTs
- Reconstruct frequency index via Chinese Remainder Theorem
- Two estimates of nonzero Fourier coefficient

IGNORED TWO ENTRIES OF f!

M.A. Iwen (MSU)	M.A.	lwen	(MSU)
-----------------	------	------	-------

Basic Idea of [I., 2013] in the case $\|\mathcal{F}_N \mathbf{f}\|_0 = 1$

$$\begin{pmatrix} \sqrt{3} \cdot \mathcal{F}_2 \cdot \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix} \\ \sqrt{2} \cdot \mathcal{F}_3 \cdot \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 3.5 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 3.5 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 3.5 & 0 & 0 \end{pmatrix}$$

- $\bullet\,$ We only utilize 4 entries from $f\in \mathbb{C}^6$
- Computed Efficiently using 2 FFTs
- Reconstruct frequency index via Chinese Remainder Theorem
- Two estimates of nonzero Fourier coefficient

IGNORED TWO ENTRIES OF f!

M.A. Iwen (MSU)

Sparse Fourier Transforms

ヨト イヨト ニヨ

A B A B A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Basic Idea of [I., 2013] in the case $\|\mathcal{F}_N \mathbf{f}\|_0 = 1$

$$\begin{pmatrix} \sqrt{3} \cdot \mathcal{F}_2 \cdot \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix} \\ \sqrt{2} \cdot \mathcal{F}_3 \cdot \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 3.5 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 3.5 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 3.5 & 0 & 0 \end{pmatrix}$$

- $\bullet\,$ We only utilize 4 entries from $f\in \mathbb{C}^6$
- Computed Efficiently using 2 FFTs
- Reconstruct frequency index via Chinese Remainder Theorem
- Two estimates of nonzero Fourier coefficient

IGNORED TWO ENTRIES OF f!

M.A. Iwen (MSU)

Basic Idea of [I., 2013] in the case $\|\mathcal{F}_N \mathbf{f}\|_0 = 1$

- $\bullet\,$ We only utilize 4 entries from $f\in \mathbb{C}^6$
- Computed Efficiently using 2 FFTs
- Reconstruct frequency index via Chinese Remainder Theorem
- Two estimates of nonzero Fourier coefficient

IGNORED TWO ENTRIES OF f!

M.A. Iwen (MSU)

Sparse Fourier Transforms

4 E 5

A D b 4 A b

$$\begin{pmatrix} \sqrt{3} \cdot \mathcal{F}_2 \cdot \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix} \\ \sqrt{2} \cdot \mathcal{F}_3 \cdot \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 3.5 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 3.5 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 3.5 & 0 & 0 \end{pmatrix}$$

- $\bullet\,$ We only utilize 4 entries from $f\in \mathbb{C}^6$
- Computed Efficiently using 2 FFTs
- Reconstruct frequency index via Chinese Remainder Theorem
- Two estimates of nonzero Fourier coefficient

IGNORED TWO ENTRIES OF f!

M.A.	lwen ((MSU)

4 E 5

Extensions: Compressed Sensing for Parametric PDE

- Setup: Given PDE A(**x**)u = g, **x** ∈ [0, 2π]^D parameters, approximate Quantity of Interest (QoI) f(**x**) = Gu(**x**) (real valued) as a function of **x**.
- Core observation: Qol *f*(**x**) is approximately sparse in appropriate (truncated) product basis *T*

$$f(\mathbf{x}) \approx \sum_{\mathbf{n} \in \Omega} c_{\mathbf{n}} T_{\mathbf{n}}(\mathbf{x})$$

that is, each $\mathbf{n} \in I_D := \{0, \dots, N-1\}^D$, indexes a basis function $T_{\mathbf{n}}$ and for $\mathbf{n} \in \Omega \subset I_D$ with $s = |\Omega|$ small, $c_{\mathbf{n}} \in \mathbb{C}$ is the coefficient.

More concretely, we consider basis functions, indexed by n ∈ I_D, of the form

$$T_{\mathbf{n}}(\mathbf{x}) = \prod_{j=1}^{D} T_{j;n_j}(x_j)$$

where each $T_{j;n_j}$ is a 1-dim basis function (e.g., $T_{j;n_j}(x) := e^{in_j x}$, orthogonal polynomials, ...).

M.A. Iwen (MSU)

Extensions: Compressed Sensing for Parametric PDE

- **Recall our goal:** Approximate $f : [0, 2\pi]^D \to \mathbb{R}$ sparse in $\{T_n\}$.
- Samples: Each PDE solve yields ≈ f(x_j) for some fixed set of parameters x_j (of our choosing).
- In matrix form: Recover s-sparse c from

$$\mathbf{f} = \begin{pmatrix} f(\mathbf{x}_1) \\ f(\mathbf{x}_2) \\ \vdots \\ f(\mathbf{x}_m) \end{pmatrix} = \begin{pmatrix} T_{\mathbf{n}_1}(\mathbf{x}_1) & T_{\mathbf{n}_2}(\mathbf{x}_1) & \cdots & T_{\mathbf{n}_{N^D}}(\mathbf{x}_1) \\ T_{\mathbf{n}_1}(\mathbf{x}_2) & T_{\mathbf{n}_2}(\mathbf{x}_2) & \cdots & T_{\mathbf{n}_{N^D}}(\mathbf{x}_2) \\ \vdots & \vdots & \ddots & \vdots \\ T_{\mathbf{n}_1}(\mathbf{x}_m) & T_{\mathbf{n}_2}(\mathbf{x}_m) & \cdots & T_{\mathbf{n}_{N^D}}(\mathbf{x}_m) \end{pmatrix} \mathbf{c}$$
$$=: \Phi \mathbf{c}$$

 Strategy [Rauhut, Schwab, Adcock, Webster, ...]: Ensure, e.g., that Φ ∈ ℝ^{m×N^D} has the Restricted Isometry Property (RIP) s.t.

$$\max_{\mathcal{S}\subset I_{\mathcal{D}}, |\mathcal{S}|\leq s} \|\Phi_{\mathcal{S}}^*\Phi_{\mathcal{S}} - \mathrm{Id}\|_{2\to 2}$$

is small. Then, appeal to compressive sensing recovery methods.

M.A. Iwen (MSU)

Sparse Fourier Transforms

Motivation: Compressed Sensing for Parametric PDEs

• Strategy [Rauhut, Schwab, Adcock, Webster, ...]:

• Compute $f(\mathbf{x}_j)$ for $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m$ (random?)

Computational cost: $m \times (\text{cost of PDE solve}).$

▶ Recover the $\mathbf{c} \in \mathbb{C}^{N^{D}}$ using ℓ_{1} minimization, OMP, CoSaMP, ...

Computational cost: $poly(N^D)$ – or $poly((log(N))^D)$ using, e.g., hyperbolic cross assumptions to constrain the overall basis size.

 Prototypical desired result [Rauhut, Schwab, Adcock, Webster, ...]: Recovery guarantees if m > spolylog(N^D, s).

The Goal: Approximate $f : [0, 2\pi]^D \mapsto \mathbb{C}$ using as few evaluations as possible, as quickly as possible... in $\mathcal{O}(D^c \dots)$ -time.

Challenge: Can we mitigate *curse of dimensionality* in last step?

くロン 不通 とくほ とくほ とうほう

Motivation: Compressed Sensing for Parametric PDEs

• Strategy [Rauhut, Schwab, Adcock, Webster, ...]:

• Compute $f(\mathbf{x}_j)$ for $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m$ (random?) *Computational cost:* $m \times (\text{cost of PDE solve}).$

▶ Recover the $\mathbf{c} \in \mathbb{C}^{N^{D}}$ using ℓ_{1} minimization, OMP, CoSaMP, ...

Computational cost: $poly(N^D)$ – or $poly((log(N))^D)$ using, e.g., hyperbolic cross assumptions to constrain the overall basis size.

 Prototypical desired result [Rauhut, Schwab, Adcock, Webster, ...]: Recovery guarantees if m > spolylog(N^D, s).

The Goal: Approximate $f : [0, 2\pi]^D \mapsto \mathbb{C}$ using as few evaluations as possible, as quickly as possible... in $\mathcal{O}(D^c \dots)$ -time.

Challenge: Can we mitigate curse of dimensionality in last step?

M.A. Iwen (MSU)

(日)

CoSaMP [Needell, Tropp] for General Product Bases

(Recall:
$$\mathbf{f} = \Phi \mathbf{c}, \mathbf{f} \in \mathbb{C}^{m}, \Phi \in \mathbb{C}^{m \times N^{D}}, \mathbf{c} \in \mathbb{C}^{N^{D}}$$
 s-sparse)

Algorithm 1 CoSaMP(Φ , f, s) recovery algorithm

1: C	$\mathbf{c}^0 = 0$	{Trivial intitial approximation}
2: 🗤	$\prime \leftarrow f$	{Current samples=input samples}
3: <i>F</i>	$\kappa \leftarrow 0$	
4: r	epeat	
5:	$k \leftarrow k + 1$	
6:	$\mathbf{v} \leftarrow \mathbf{\Phi}^* \mathbf{v}$	{Form signal proxy}
7:	$\mathcal{S} \leftarrow \operatorname{supp}(\mathbf{w}_{2s})$	{Identify large components}
8:	$T \leftarrow \mathcal{S} \cup \operatorname{supp}(\mathbf{C}^{k-1})$	{merge supports}
9:	$\mathbf{a}_{\mathcal{T}} \leftarrow \Phi_{\mathcal{T}}^{\dagger} \mathbf{f}$	{Signal estimation by least-squares}
10:	$\mathbf{c}^k \leftarrow \mathbf{a}^{\mathrm{opt}}_s$	{Prune to obtain next approximation}
11:	$\mathbf{v} \leftarrow \mathbf{f} - \mathbf{\Phi} \mathbf{c}^k$	{Update current samples}
12: L	until halting criterion true	

э

A D > A B > A B > A B >

Numerics: Fourier Basis

Figure: Fourier basis, $N = 20, D \in \{5, 10, 15, 20, \dots, 75\}, s = 5$. Reconstruction errors in $\ell^2 \sim 10^{-15}$.

• Standard compressive sensing methods would require more bytes of memory than there are atoms in the universe in order to store their intermediate solutions when D = 75...

M.A. Iwen (MSU)

Sparse Fourier Transforms

Thank You! Some other great talks coming up...

- Sina Bittens: Faster sparse FFTs for functions with structured support. For example, frequencies confined to a few (a priori unknown) bands.
- **Toni Volkmer**, and **Bosu Choi:** More on (Sparse) Fourier transforms in high dimensions!

Post Doc Position Available!

Email if interested (markiwen@math.msu.edu)

(B)