FFT for Magnetrohydrodynamic Simulations

Benson Muite
Kichakato Kizito
Kenya

Outline

  • Introduction
  • Areas of investigation
  • Equations
  • Computational requirements
  • References

Introduction

  • FFT enables accurate simulations
  • FFT is communication intensive, not great for modern parallel architectures
  • Spectra useful in understanding behavior of the differential equation
  • FFT can give good preservation of geometric properties of discretized equations

Introduction

  • Examine incompressible case
  • Model equations to understand reduced solar physics
  • Also of mathematical interest

Areas of Interest

  • Magnetohydrodynamic turbulence with and without viscosity
  • Extend computational Euler investigations to a new setting - magnetohydrodynamics without viscosity

Equations

\[\begin{aligned} & \frac{\partial u}{\partial x} \rightarrow ik_x\hat{u} \end{aligned}\]

Equations

\[\begin{aligned} & \frac{\partial\mathbf{u}}{\partial t} + \mathbf{u}\cdot\nabla\mathbf{u} = -\nabla p + \mathbf{b}\cdot\nabla\mathbf{b}-\nabla(\mathbf{b}\cdot\mathbf{b})+\Delta\mathbf{u} \\ & \frac{\partial\mathbf{b}}{\partial t} + \mathbf{u}\cdot\nabla\mathbf{b} = \mathbf{b}\cdot\nabla\mathbf{u} + \Delta \mathbf{b} \\ & \nabla\cdot\mathbf{u} = 0 \\ & \nabla\cdot\mathbf{b} = 0 \end{aligned}\]

Equations - no viscosity

\[\begin{aligned}\require{cancel} & \frac{\partial\mathbf{u}}{\partial t} + \mathbf{u}\cdot\nabla\mathbf{u} = -\nabla p + \mathbf{b}\cdot\nabla\mathbf{b}-\nabla(\mathbf{b}\cdot\mathbf{b})\xcancel{+\Delta\mathbf{u}} \\ & \frac{\partial\mathbf{b}}{\partial t} + \mathbf{u}\cdot\nabla\mathbf{b} = \mathbf{b}\cdot\nabla\mathbf{u} \xcancel{+ \Delta \mathbf{b}} \\ & \nabla\cdot\mathbf{u} = 0 \\ & \nabla\cdot\mathbf{b} = 0 \end{aligned}\]

Discretization - 2D

\[\begin{aligned} & u = \frac{\partial\psi}{\partial y} \quad v = - \frac{\partial\psi}{\partial x} \\ & b_x = \frac{\partial\phi}{\partial y} \quad b_y = -\frac{\partial\phi}{\partial x} \\ & \omega = \nabla \times \mathbf{u} = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} = - \Delta \psi \\ & \alpha = \nabla \times \mathbf{b} = \frac{\partial b_y}{\partial x} - \frac{\partial b_x}{\partial y} = -\Delta \phi \end{aligned}\]

Discretization - 2D

\[\begin{aligned} & \frac{\partial\omega}{\partial t} + u\frac{\partial \omega}{\partial x} + v\frac{\partial\omega}{\partial y} = b_x\frac{\partial \alpha}{\partial x} + b_y\frac{\partial \alpha}{\partial y} + \Delta \omega \\ & \frac{\partial\alpha}{\partial t} + u\frac{\partial\alpha}{\partial x} + v\frac{\partial\alpha}{\partial y} = b_x\frac{\partial \omega}{\partial x} + b_y\frac{\partial \omega}{\partial y} + \Delta \alpha \\ & \Delta \psi = -\omega \\ & \Delta \phi = -\alpha \end{aligned} \]

Discretization - 3D

\[\begin{aligned} & \frac{\partial \mathbf{u}}{\partial t} = \Delta \mathbf{u} + \mathbf{b}\cdot\nabla\mathbf{b} - \mathbf{u}\cdot\nabla\mathbf{u} - \nabla(\mathbf{b}\cdot\mathbf{b}) \\ & \quad + \nabla\Delta^{-1}[\nabla\cdot(\mathbf{u}\cdot\nabla\mathbf{u})-(\mathbf{b}\cdot\nabla\mathbf{b})] \\ & \frac{\partial \mathbf{b}}{\partial t} = \Delta \mathbf{b} + \mathbf{b}\cdot\nabla\mathbf{u} - \mathbf{u}\cdot\nabla{b} \\ & \quad + \nabla\Delta^{-1}[\nabla\cdot(\mathbf{u}\cdot\nabla\mathbf{b})-(\mathbf{b}\cdot\nabla\mathbf{u})] \end{aligned}\]

Discretization - 3D, no viscosity

\[\begin{aligned}\require{cancel} & \frac{\partial \mathbf{u}}{\partial t} =\xcancel{ \Delta \mathbf{u} +} \mathbf{b}\cdot\nabla\mathbf{b} - \mathbf{u}\cdot\nabla\mathbf{u} - \nabla(\mathbf{b}\cdot\mathbf{b}) \\ &\quad + \nabla\Delta^{-1}[\nabla\cdot(\mathbf{u}\cdot\nabla\mathbf{u})-(\mathbf{b}\cdot\nabla\mathbf{b})] \\ & \frac{\partial \mathbf{b}}{\partial t} = \xcancel{ \Delta \mathbf{b} +} \mathbf{b}\cdot\nabla\mathbf{u} - \mathbf{u}\cdot\nabla{b} \\ &\quad + \nabla\Delta^{-1}[\nabla\cdot(\mathbf{u}\cdot\nabla\mathbf{b})-(\mathbf{b}\cdot\nabla\mathbf{u})] \end{aligned}\]

Computational requirements

  • 2D - 9 scalar fields x 3/4/5 for time discretization + 2 fields for nonlinear terms, 655362 grid points
  • 3D - 30 scalar fields x 3/4/5 for time discretization + 6 fields for nonlinear terms, 163843 grid points
  • At high resolution quadruple precision can be helpful
  • Calculate \[\lVert (i\mathbf{k})^p\hat{\mathbf{u}} \rVert \]

References

References

  • Orszag, S.; Tang, C.M. (1979). "Small-scale structure of two-dimensional magnetohydrodynamic turbulence". Journal of Fluid Mechanics 90 (1): 129-143.
  • Verma, Mahendra (2004). "Statistical theory of magnetohydrodynamic turbulence: recent results". Physics Reports 401: 220-380.

Acknowledgements

  • University of Michigan
  • King Abdullah University of Science and Technology
  • University of Tartu
  • Samar Aseeri