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Aim of this minisymposium

* The fast Fourier Transform (FFT) is an algorithm used
In a wide variety of applications, yet does not make
optimal use of many current hardware platforms.

« Hardware utilization performance, on its own, does not
however, imply optimal problem solving.

* The purpose of this mini-symposium is to enable the
exchange of information between people working on
alternative FFT algorithms, to those working on FFT
implementations, in particular for parallel hardware.

* |n addition to FFT algorithms, number-theoretical
transform (NTT) is also included in the topic of this
minisymposium.

 http://www.fft.report
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Background

The fast Fourier transform (FFT) is an algorithm
that is widely used today in scientific and
engineering computing.

FFTs are often computed using complex or real

numbers, but it is known that these transforms

can also be computed in a ring and a finite field
[Pollard 1971].

Such a transform is called the number-theoretic
transform (NTT).

The NTT is used for homomorphic encryption,
polynomial multiplication, and multiple-precision
multiplication.
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Related Works (1/2)

« Spiral-generated modular FFTs have been proposed
[Meng et al. 2010 and 2013].

— Experiments were performed using 32-bit integers and 16-
bit primes with Intel SSE4 instructions.
* An implementation of NTT using the Intel
AVX-512IFMA (Integer Fused Multiply-Add)
iInstructions has been proposed [Boemer et al. 2021].

— This implementation is available as the Intel Homomorphic
Encryption (HE) Acceleration Library.

— Intel HEXL targets the typical data size n = [219, 217] of
NTTs used in homomorphic encryption and is not
parallelized.
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Related Works (2/2)

* An Implementation of Parallel Number-Theoretic
Transform Using Intel AVX-512 Instructions has
been proposed [Takahashi 2022].

— NTT kernels are vectorized using the Intel AVX-512
instructions.

— Six-step NTT is parallelized using OpenMP.
* Vectorizing and distributing number-theoretic

transform on Arm-based supercomputers have
been proposed [Jesus et al. 2023].

— For counting Goldbach partitions.
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Objectives

 We consider accelerating NTT for larger data
sizes by parallelization, targeting polynomial
multiplication and multiple-precision multiplication.

« We parallelize the four-step NTT using MPI and
OpenACC.
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Number-Theoretic Transform (NTT)

* The number-theoretic transform (NTT) can be
expressed in a field F, = Z/pZ, where p is a prime
number:

n—1

y(k) = 2 xU)w,{Lkmod p, 0<k<n-—1,

]=0
iIn which w,, is the primitive n-th root of unity.

e The n-point NTT is directly computed by 0(n?)
arithmetic operations, but by applying an algorithm
similar to FFT, the number of arithmetic operations
can be reduced to O(nlogn).
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Stockham Radix-2 NTT Algorithm
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Algorithm 1 Stockham radix-2 NT'T algorithm

Input: n =27, Xo(j)=2(j), 0<j57<n-—1, and
Wy, 18 the primitive n-th root of unity.

Output: y(k) = X, (k) = Zﬂ_l x (] )

1

2
3
4

XS TR

11:
12:
13:
14:

L+ n/2
cm 1
. for t from 1 to g do

end for
end for
[ < 1/2
m < 2m
end for

j=0

for j from O to/l — 1 do
for £ from 0 to m — 1 do
co + Xi—1(k+g3m)
c1 + Xi—1(k+gm+1Im)
Xi(k+2jm) < (co + c1) mod p
Xi(k+2jm+m) < w!™(co —c1) mod p

Jk

“wn

modp, 0<k<n-—1
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Modular Arithmetic in NTT

The butterfly operation of the NTT can be performed
using modular addition, subtraction, and multiplication.

The modular addition c = (a+ b) mod N for 0 < a,b <
N can be replaced by the addition ¢ = a + b and the
conditional subtraction ¢ — N when c > N.

Modular multiplication includes modulo operations,
which are slow due to the integer division process.

However, Montgomery multiplication

[Montgomery 1985] and Shoup’s modular
multiplication [Harvey 2014] are known to avoid this
problem.

2024/3/7 SIAM PP24 12



Montgomery Multiplication
Algorithm [Montgomery 1985]

Algorithm 2 Montgomery multiplication algorithm

Input: A, B, N suchthat 0 < A, B< N, 8> N,
ged(B,N) =1, p=—=N""mod f3
Output: C = ABS~ ' mod N such that 0 < C < N
l1: C + AB
q < nC' mod
C'+ (C+gN)/B
if C' > N then
C+—C-—-N
return C.
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Modular Multiplication

The modular multiplication ¢ = ab mod N can be
performed using Montgomery multiplication as follows:

Convert a and b to Montgomery representations
A =aff mod N and B = bf mod N, where [ is an integer
such that § > N and gcd(B,N) = 1.

Perform Montgomery multiplication ¢ = AB~! mod N,
where B~1 is the modular multiplicative inverse of
BBt =1 (modN).
Inverse transforming the results of Montgomery
multiplication C to its representation c in the original
domain:
c=CB 'modN = (ABL ' modN) B~ mod N

= {(aff mod N)(bf mod N)B~ mod N}~ mod N

= ab mod N
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Four-Step NTT Algorithm

If n has factors n, and n, (n = n; X n,), in the
same way as the four-step FFT algorithm
[Bailey 1990], the following four-step NTT
algorithm is derived:

Step 1: n,; simultaneous n,-point multirow NTTs
Step 2: Twiddle factor (w,ﬁlkz) multiplication
Step 3: Transposition

Step 4: n, simultaneous n,-point multirow NTTs
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Parallel NTT Algorithm Based on
Four-Step Il\\,lTT

N,

Rearrange 2 Perform
with All-to- twiddle factor
all comm. (w#KZ)

Ny multiplication
Transpose
with All-to-

Rearrange N; all comm.

with All-to-
all comm.

W8 P,| P,| P, | P; N
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Parallelization of Four-Step NTT

#pragma acc data present(a[0:nn], b[0:nn], wx[0:nx/2], wy[0:ny/2], w[0:nn]) {
[* Step 1: Rearrange (nx / nproc) * nproc * (ny / nproc)
to (nx / nproc) * (ny / nproc) * nproc */

#pragma acc parallel loop collapse(3)

for (k = 0; k < nproc; k++)

for (j = 0; j < nny; j++)
for (i=0;i < nnx; i++)
bli+j*nnx+Kk*(nnx * nny)]=ali + k* nnx +j * (nnx * nproc)];

[* Step 2: All-to-all communication */
#pragma acc host_data use device(a, b)

MPI_Alltoall(b, nn / nproc, MPl_UNSIGNED LONG LONG, a, nn/ nproc,

MPI_UNSIGNED LONG_LONG, MPI_COMM_WORLD);

[* Step 3: (nx / nproc) simultaneous ny-point multirow NTTs */

nttsub(a, b, wy, nnx, ny, ipy, np, mu);
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Performance Results

* For performance evaluation, we compared
the performance of the following parallel
NTTs with a modulus of 63 bits:

— MPI1+OpenACC (GPU implementation) of the
four-step NTT

— MPI1+OpenMP (CPU implementation) of the
six-step NTT [Takahashi 2022]

* The giga-operations per second (Gops)
values are each based on (3/2)N log, N for
a transform of size N = 2™.
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Evaluation Environment

* The performance was measured on the Pegasus,
a GPU cluster at the University of Tsukuba.
— 120 nodes, Peak 6.5 PFlops

— CPU: Intel Xeon Platinum 8468
(48 cores, 2.1 GHz, 3.2 TFlops)

— GPU: NVIDIA H100 Tensor Core GPU with PCle
— Interconnect: NVIDIA Quantum-2 InfiniBand (200 Gbps)
— Compiler: NVIDIA HPC Compilers 23.9
— MPI library: OpenMPI1 4.1.5
— Compiler option:
“-fast -acc=gpu -gpu=cc90 (for GPU implementation)
“-fast -mp -tp=sapphirerapids (for CPU implementation)
 Each node has 48 cores and 1 MPI process.
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Breakdown of Execution Time of
GPU and CPU implementations
(N = 239 x number of nodes)
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Discussion

In the case of using GPUs, the computation time is
reduced as compared with the case of using CPUs only,
whereas the communication time is almost the same.

We can clearly see that the all-to-all communication
overhead contributes significantly to the execution time.

For this reason, the difference in performance between
GPU implementation and CPU implementation decreases
as the number of nodes increases.

PCle transfer is the chief bottleneck because the
bandwidth of PCle Gen 5 is only 128 GB/s, whereas the
memory bandwidth of NVIDIA H100 Tensor Core GPU
with PCle is 2000 GB/s.
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Performance of All-to-all Communication
(32 nodes, 32 MPI processes)
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Conclusion

We proposed the implementation of the parallel
NTT on GPU clusters.

The butterfly operation of the NTT can be
performed using modular addition, subtraction,
and multiplication.

We parallelized the four-step NTT using MPI and
OpenACC.

We successfully achieved a performance of over
745 Gops on 32 nodes of the Pegasus (120
nodes) for a 23°>-point NTT with a modulus of 63
bits.
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