
MS52
Next Generation FFT Algorithms in Theory 
and Practice: Parallel Implementations and 

Applications
• Organizers:

– Daisuke Takahashi
University of Tsukuba, Japan

– Franz Franchetti
Carnegie Mellon University, U.S.

– Samar A. Aseeri
King Abdullah University of Science & 
Technology (KAUST), Saudi Arabia

2024/3/7 SIAM PP24 1



Aim of this minisymposium
• The fast Fourier Transform (FFT) is an algorithm used 

in a wide variety of applications, yet does not make 
optimal use of many current hardware platforms.

• Hardware utilization performance, on its own, does not 
however, imply optimal problem solving.

• The purpose of this mini-symposium is to enable the 
exchange of information between people working on 
alternative FFT algorithms, to those working on FFT 
implementations, in particular for parallel hardware.

• In addition to FFT algorithms, number-theoretical 
transform (NTT) is also included in the topic of this 
minisymposium.

• http://www.fft.report
2024/3/7 SIAM PP24 2

http://www.fft.report/


MS52
• 3:45-4:10 Implementation of Parallel Number-Theoretic 

Transform on GPU Clusters
Daisuke Takahashi, University of Tsukuba, Japan

• 4:15-4:40 FFTX: Release, Updates and Next Steps
Franz Franchetti and Sanil Rao, Carnegie Mellon University, U.S.

• 4:45-5:10 A Comparison of Intel and OSU All-to-all Benchmarks 
for Next Generation FFT Algorithms
Samar A. Aseeri, King Abdullah University of Science & Technology
(KAUST), Saudi Arabia; Benson Muite, Kichakato Kizito, Kenya;
David E. Keyes, KAUST, Saudi Arabia and Columbia University, U.S.

• 5:15-5:40 Latest Advanced on Parallel and Distributed FFT 
Computation on NVIDIA GPU
Miguel Ferrer Avila, Josh Romero, Lukasz Ligowski, and
Filippo Spiga, NVIDIA, U.S.

2024/3/7 SIAM PP24 3



Implementation of Parallel
Number-Theoretic Transform on

GPU Clusters

Daisuke Takahashi
Center for Computational Sciences

University of Tsukuba, Japan

2024/3/7 SIAM PP24 4



Outline
• Background
• Objectives
• Number-theoretic Transform (NTT)
• Four-Step NTT Algorithm
• Parallel Implementation of NTT
• Performance Results
• Conclusion

52024/3/7 SIAM PP24



Background
• The fast Fourier transform (FFT) is an algorithm 

that is widely used today in scientific and 
engineering computing.

• FFTs are often computed using complex or real 
numbers, but it is known that these transforms 
can also be computed in a ring and a finite field 
[Pollard 1971].

• Such a transform is called the number-theoretic 
transform (NTT).

• The NTT is used for homomorphic encryption, 
polynomial multiplication, and multiple-precision 
multiplication.

62024/3/7 SIAM PP24



Related Works (1/2)
• Spiral-generated modular FFTs have been proposed 

[Meng et al. 2010 and 2013].
– Experiments were performed using 32-bit integers and 16-

bit primes with Intel SSE4 instructions.
• An implementation of NTT using the Intel

AVX-512IFMA (Integer Fused Multiply-Add) 
instructions has been proposed [Boemer et al. 2021].
– This implementation is available as the Intel Homomorphic 

Encryption (HE) Acceleration Library.
– Intel HEXL targets the typical data size 𝑛𝑛 = 210, 217 of 

NTTs used in homomorphic encryption and is not 
parallelized.

72024/3/7 SIAM PP24



Related Works (2/2)
• An Implementation of Parallel Number-Theoretic 

Transform Using Intel AVX-512 Instructions has 
been proposed [Takahashi 2022].
– NTT kernels are vectorized using the Intel AVX-512 

instructions.
– Six-step NTT is parallelized using OpenMP.

• Vectorizing and distributing number-theoretic 
transform on Arm-based supercomputers have 
been proposed [Jesus et al. 2023].
– For counting Goldbach partitions.

82024/3/7 SIAM PP24



Objectives
• We consider accelerating NTT for larger data 

sizes by parallelization, targeting polynomial 
multiplication and multiple-precision multiplication.

• We parallelize the four-step NTT using MPI and 
OpenACC.

92024/3/7 SIAM PP24



Number-Theoretic Transform (NTT)
• The number-theoretic transform (NTT) can be 

expressed in a field 𝐅𝐅𝑝𝑝 = 𝐙𝐙/𝑝𝑝𝐙𝐙, where 𝑝𝑝 is a prime 
number:

𝑦𝑦 𝑘𝑘 = �
𝑗𝑗=0

𝑛𝑛−1

𝑥𝑥 𝑗𝑗 𝜔𝜔𝑛𝑛
𝑗𝑗𝑗𝑗mod 𝑝𝑝, 0 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 1,

in which 𝜔𝜔𝑛𝑛 is the primitive 𝑛𝑛-th root of unity.
• The 𝑛𝑛-point NTT is directly computed by 𝑂𝑂 𝑛𝑛2

arithmetic operations, but by applying an algorithm 
similar to FFT, the number of arithmetic operations 
can be reduced to 𝑂𝑂 𝑛𝑛 log𝑛𝑛 .

102024/3/7 SIAM PP24



Stockham Radix-2 NTT Algorithm

112024/3/7 SIAM PP24



Modular Arithmetic in NTT
• The butterfly operation of the NTT can be performed 

using modular addition, subtraction, and multiplication.
• The modular addition 𝑐𝑐 = 𝑎𝑎 + 𝑏𝑏 mod 𝑁𝑁 for 0 ≤ 𝑎𝑎, 𝑏𝑏 <
𝑁𝑁 can be replaced by the addition 𝑐𝑐 = 𝑎𝑎 + 𝑏𝑏 and the 
conditional subtraction 𝑐𝑐 − 𝑁𝑁 when 𝑐𝑐 ≥ 𝑁𝑁.

• Modular multiplication includes modulo operations, 
which are slow due to the integer division process.

• However, Montgomery multiplication
[Montgomery 1985] and Shoup’s modular 
multiplication [Harvey 2014] are known to avoid this 
problem.

122024/3/7 SIAM PP24



132024/3/7 SIAM PP24

Montgomery Multiplication 
Algorithm [Montgomery 1985]



Modular Multiplication
• The modular multiplication 𝑐𝑐 = 𝑎𝑎𝑎𝑎 mod 𝑁𝑁 can be 

performed using Montgomery multiplication as follows:
• Convert 𝑎𝑎 and 𝑏𝑏 to Montgomery representations
𝐴𝐴 = 𝑎𝑎𝛽𝛽 mod 𝑁𝑁 and 𝐵𝐵 = 𝑏𝑏𝛽𝛽 mod 𝑁𝑁, where 𝛽𝛽 is an integer 
such that 𝛽𝛽 > 𝑁𝑁 and gcd 𝛽𝛽,𝑁𝑁 = 1.

• Perform Montgomery multiplication 𝐶𝐶 = 𝐴𝐴𝐴𝐴𝛽𝛽−1 mod 𝑁𝑁, 
where 𝛽𝛽−1 is the modular multiplicative inverse of
𝛽𝛽𝛽𝛽−1 ≡ 1 mod 𝑁𝑁 .

• Inverse transforming the results of Montgomery 
multiplication 𝐶𝐶 to its representation 𝑐𝑐 in the original 
domain:
𝑐𝑐 = 𝐶𝐶𝛽𝛽−1 mod 𝑁𝑁 = 𝐴𝐴𝐴𝐴𝛽𝛽−1 mod 𝑁𝑁 𝛽𝛽−1 mod 𝑁𝑁

= 𝑎𝑎𝛽𝛽 mod 𝑁𝑁 𝑏𝑏𝛽𝛽 mod 𝑁𝑁 𝛽𝛽−1 mod 𝑁𝑁 𝛽𝛽−1 mod 𝑁𝑁
= 𝑎𝑎𝑎𝑎 mod 𝑁𝑁

142024/3/7 SIAM PP24



Four-Step NTT Algorithm
• If 𝑛𝑛 has factors 𝑛𝑛1 and 𝑛𝑛2 (𝑛𝑛 = 𝑛𝑛1 × 𝑛𝑛2), in the 

same way as the four-step FFT algorithm
[Bailey 1990], the following four-step NTT 
algorithm is derived:

• Step 1: 𝑛𝑛1 simultaneous 𝑛𝑛2-point multirow NTTs
• Step 2: Twiddle factor (𝜔𝜔𝑛𝑛

𝑗𝑗1𝑘𝑘2) multiplication
• Step 3: Transposition
• Step 4: 𝑛𝑛2 simultaneous 𝑛𝑛1-point multirow NTTs

152024/3/7 SIAM PP24



16

Parallel NTT Algorithm Based on
Four-Step NTT

Rearrange 
with All-to-
all comm.

Rearrange 
with All-to-
all comm.

𝑁𝑁1

𝑁𝑁2

𝑁𝑁2

𝑁𝑁1

𝑁𝑁1

𝑁𝑁2

𝑁𝑁1

𝑁𝑁2

𝑃𝑃0𝑃𝑃1𝑃𝑃2𝑃𝑃3

𝑃𝑃0 𝑃𝑃1 𝑃𝑃2 𝑃𝑃3

Perform 
twiddle factor 
(𝜔𝜔𝑁𝑁

𝐽𝐽1𝐾𝐾2) 
multiplication

2024/3/7 SIAM PP24

Transpose 
with All-to-
all comm.



#pragma acc data present(a[0:nn], b[0:nn], wx[0:nx/2], wy[0:ny/2], w[0:nn]) {
/* Step 1: Rearrange (nx / nproc) * nproc * (ny / nproc)

to (nx / nproc) * (ny / nproc) * nproc */
#pragma acc parallel loop collapse(3)

for (k = 0; k < nproc; k++)
for (j = 0; j < nny; j++)

for (i = 0; i < nnx; i++)
b[i + j * nnx + k * (nnx * nny)] = a[i + k * nnx + j * (nnx * nproc)];

/* Step 2: All-to-all communication */
#pragma acc host_data use_device(a, b)

MPI_Alltoall(b, nn / nproc, MPI_UNSIGNED_LONG_LONG, a, nn / nproc,
MPI_UNSIGNED_LONG_LONG, MPI_COMM_WORLD);

/* Step 3: (nx / nproc) simultaneous ny-point multirow NTTs */
nttsub(a, b, wy, nnx, ny, ipy, np, mu);

…

Parallelization of Four-Step NTT

172024/3/7 SIAM PP24



Performance Results
• For performance evaluation, we compared 

the performance of the following parallel 
NTTs with a modulus of 63 bits:
– MPI+OpenACC (GPU implementation) of the 

four-step NTT
– MPI+OpenMP (CPU implementation) of the 

six-step NTT [Takahashi 2022]
• The giga-operations per second (Gops) 

values are each based on 3/2 𝑁𝑁 log2 𝑁𝑁 for 
a transform of size 𝑁𝑁 = 2𝑚𝑚.

182024/3/7 SIAM PP24



Evaluation Environment
• The performance was measured on the Pegasus,

a GPU cluster at the University of Tsukuba.
– 120 nodes, Peak 6.5 PFlops
– CPU: Intel Xeon Platinum 8468

(48 cores, 2.1 GHz, 3.2 TFlops)
– GPU: NVIDIA H100 Tensor Core GPU with PCIe
– Interconnect: NVIDIA Quantum-2 InfiniBand (200 Gbps)
– Compiler: NVIDIA HPC Compilers 23.9
– MPI library: OpenMPI 4.1.5
– Compiler option:

“-fast -acc=gpu -gpu=cc90 (for GPU implementation)
“-fast -mp -tp=sapphirerapids (for CPU implementation)

• Each node has 48 cores and 1 MPI process.

192024/3/7 SIAM PP24



Performance of Parallel NTTs
(𝑁𝑁 = 230 × number of nodes)

1

10

100

1000

1 2 4 8 16 32

G
op

s

Number of nodes

GPU GPU + memcpy CPU

202024/3/7 SIAM PP24



Breakdown of Execution Time of
GPU and CPU implementations

(𝑁𝑁 = 230 × number of nodes)

0

1

2

3

4

5

6

gpu cpu gpu cpu gpu cpu gpu cpu gpu cpu gpu cpu

Ti
m

e 
(s

ec
)

Communication Computation

212024/3/7 SIAM PP24

1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes



Discussion
• In the case of using GPUs, the computation time is 

reduced as compared with the case of using CPUs only, 
whereas the communication time is almost the same.

• We can clearly see that the all-to-all communication 
overhead contributes significantly to the execution time.

• For this reason, the difference in performance between 
GPU implementation and CPU implementation decreases 
as the number of nodes increases.

• PCIe transfer is the chief bottleneck because the 
bandwidth of PCIe Gen 5 is only 128 GB/s, whereas the 
memory bandwidth of NVIDIA H100 Tensor Core GPU 
with PCIe is 2000 GB/s.

222024/3/7 SIAM PP24



Performance of All-to-all Communication
(32 nodes, 32 MPI processes)

0
2
4
6
8

10
12
14
16
18

8 16 32 64 12
8

25
6

51
2 1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M 8M 16
M

32
M

64
M

12
8M

25
6M

G
B/

s

Message size (bytes)

GPU-GPU CPU-CPU

232024/3/7 SIAM PP24



Conclusion
• We proposed the implementation of the parallel 

NTT on GPU clusters.
• The butterfly operation of the NTT can be 

performed using modular addition, subtraction, 
and multiplication.

• We parallelized the four-step NTT using MPI and 
OpenACC.

• We successfully achieved a performance of over 
745 Gops on 32 nodes of the Pegasus (120 
nodes) for a 235-point NTT with a modulus of 63 
bits.

242024/3/7 SIAM PP24


	MS52�Next Generation FFT Algorithms in Theory and Practice: Parallel Implementations and Applications
	Aim of this minisymposium
	MS52
	Implementation of Parallel�Number-Theoretic Transform on�GPU Clusters
	Outline
	Background
	Related Works (1/2)
	Related Works (2/2)
	Objectives
	Number-Theoretic Transform (NTT)
	Stockham Radix-2 NTT Algorithm
	Modular Arithmetic in NTT
	Montgomery Multiplication Algorithm [Montgomery 1985]
	Modular Multiplication
	Four-Step NTT Algorithm
	Parallel NTT Algorithm Based on�Four-Step NTT
	Parallelization of Four-Step NTT
	Performance Results
	Evaluation Environment
	Performance of Parallel NTTs�(𝑁= 2 30 × number of nodes)
	Breakdown of Execution Time of�GPU and CPU implementations�(𝑁= 2 30 × number of nodes)
	Discussion
	Performance of All-to-all Communication�(32 nodes, 32 MPI processes)
	Conclusion

