MS52
Next Generation FFT Algorithms in Theory
and Practice: Parallel Implementations and
Applications

* Organizers:

— Daisuke Takahashi
University of Tsukuba, Japan

— Franz Franchetti
Carnegie Mellon University, U.S.

— Samar A. Aseeri
King Abdullah University of Science &
Technology (KAUST), Saudi Arabia

2024/3/7 SIAM PP24

Aim of this minisymposium

* The fast Fourier Transform (FFT) is an algorithm used
In a wide variety of applications, yet does not make
optimal use of many current hardware platforms.

« Hardware utilization performance, on its own, does not
however, imply optimal problem solving.

* The purpose of this mini-symposium is to enable the
exchange of information between people working on
alternative FFT algorithms, to those working on FFT
implementations, in particular for parallel hardware.

* |n addition to FFT algorithms, number-theoretical
transform (NTT) is also included in the topic of this
minisymposium.

 http://www.fft.report

2024/3/7 SIAM PP24 2

http://www.fft.report/

MS52

3:45-4:10 Implementation of Parallel Number-Theoretic
Transform on GPU Clusters

Daisuke Takahashi, University of Tsukuba, Japan
4:15-4:40 FFTX: Release, Updates and Next Steps
Franz Franchetti and Sanil Rao, Carnegie Mellon University, U.S.

4:45-5:10 A Comparison of Intel and OSU All-to-all Benchmarks
for Next Generation FFT Algorithms

Samar A. Aseeri, King Abdullah University of Science & Technology
(KAUST), Saudi Arabia; Benson Muite, Kichakato Kizito, Kenya;
David E. Keyes, KAUST, Saudi Arabia and Columbia University, U.S.

5:15-5:40 Latest Advanced on Parallel and Distributed FFT
Computation on NVIDIA GPU

Miguel Ferrer Avila, Josh Romero, Lukasz Ligowski, and
Filippo Spiga, NVIDIA, U.S.

2024/3/7 SIAM PP24 3

Implementation of Parallel
Number-Theoretic Transform on

GPU Clusters

Daisuke Takahashi

Center for Computational Sciences
University of Tsukuba, Japan

2024/3/7 SIAM PP24

Outline

Background

Objectives

Number-theoretic Transform (NTT)
Four-Step NTT Algorithm

Parallel Implementation of NTT
Performance Results

Conclusion

2024/3/7 SIAM PP24

Background

The fast Fourier transform (FFT) is an algorithm
that is widely used today in scientific and
engineering computing.

FFTs are often computed using complex or real

numbers, but it is known that these transforms

can also be computed in a ring and a finite field
[Pollard 1971].

Such a transform is called the number-theoretic
transform (NTT).

The NTT is used for homomorphic encryption,
polynomial multiplication, and multiple-precision
multiplication.

2024/3/7 SIAM PP24

Related Works (1/2)

« Spiral-generated modular FFTs have been proposed
[Meng et al. 2010 and 2013].

— Experiments were performed using 32-bit integers and 16-
bit primes with Intel SSE4 instructions.
* An implementation of NTT using the Intel
AVX-512IFMA (Integer Fused Multiply-Add)
iInstructions has been proposed [Boemer et al. 2021].

— This implementation is available as the Intel Homomorphic
Encryption (HE) Acceleration Library.

— Intel HEXL targets the typical data size n = [219, 217] of
NTTs used in homomorphic encryption and is not
parallelized.

2024/3/7 SIAM PP24

Related Works (2/2)

* An Implementation of Parallel Number-Theoretic
Transform Using Intel AVX-512 Instructions has
been proposed [Takahashi 2022].

— NTT kernels are vectorized using the Intel AVX-512
instructions.

— Six-step NTT is parallelized using OpenMP.
* Vectorizing and distributing number-theoretic

transform on Arm-based supercomputers have
been proposed [Jesus et al. 2023].

— For counting Goldbach partitions.

2024/3/7 SIAM PP24

Objectives

 We consider accelerating NTT for larger data
sizes by parallelization, targeting polynomial
multiplication and multiple-precision multiplication.

« We parallelize the four-step NTT using MPI and
OpenACC.

2024/3/7 SIAM PP24 9

Number-Theoretic Transform (NTT)

* The number-theoretic transform (NTT) can be
expressed in a field F, = Z/pZ, where p is a prime
number:

n—1

y(k) = 2 xU)w,{Lkmod p, 0<k<n-—1,

]=0
iIn which w,, is the primitive n-th root of unity.

e The n-point NTT is directly computed by 0(n?)
arithmetic operations, but by applying an algorithm
similar to FFT, the number of arithmetic operations
can be reduced to O(nlogn).

2024/3/7 SIAM PP24 10

Stockham Radix-2 NTT Algorithm

2024/3/7

Algorithm 1 Stockham radix-2 NT'T algorithm

Input: n =27, Xo(j)=2(j), 0<j57<n-—1, and
Wy, 18 the primitive n-th root of unity.

Output: y(k) = X, (k) = Zﬂ_l x (])

1

2
3
4

XS TR

11:
12:
13:
14:

L+ n/2
cm 1
. for t from 1 to g do

end for
end for
[< 1/2
m < 2m
end for

j=0

for j from O to/l — 1 do
for £ from 0 to m — 1 do
co + Xi—1(k+g3m)
c1 + Xi—1(k+gm+1Im)
Xi(k+2jm) < (co + c1) mod p
Xi(k+2jm+m) < w!™(co —c1) mod p

Jk

“wn

modp, 0<k<n-—1

SIAM PP24

11

Modular Arithmetic in NTT

The butterfly operation of the NTT can be performed
using modular addition, subtraction, and multiplication.

The modular addition c = (a+ b) mod N for 0 < a,b <
N can be replaced by the addition ¢ = a + b and the
conditional subtraction ¢ — N when c > N.

Modular multiplication includes modulo operations,
which are slow due to the integer division process.

However, Montgomery multiplication

[Montgomery 1985] and Shoup’s modular
multiplication [Harvey 2014] are known to avoid this
problem.

2024/3/7 SIAM PP24 12

Montgomery Multiplication
Algorithm [Montgomery 1985]

Algorithm 2 Montgomery multiplication algorithm

Input: A, B, N suchthat 0 < A, B< N, 8> N,
ged(B,N) =1, p=—=N""mod f3
Output: C = ABS~ ' mod N such that 0 < C < N
l1: C + AB
q < nC' mod
C'+ (C+gN)/B
if C' > N then
C+—C-—-N
return C.

2024/3/7 SIAM PP24

13

Modular Multiplication

The modular multiplication ¢ = ab mod N can be
performed using Montgomery multiplication as follows:

Convert a and b to Montgomery representations
A =aff mod N and B = bf mod N, where [is an integer
such that § > N and gcd(B,N) = 1.

Perform Montgomery multiplication ¢ = AB~! mod N,
where B~1 is the modular multiplicative inverse of
BBt =1 (modN).
Inverse transforming the results of Montgomery
multiplication C to its representation c in the original
domain:
c=CB 'modN = (ABL ' modN) B~ mod N

= {(aff mod N)(bf mod N)B~ mod N}~ mod N

= ab mod N

2024/3/7 SIAM PP24

14

Four-Step NTT Algorithm

If n has factors n, and n, (n = n; X n,), in the
same way as the four-step FFT algorithm
[Bailey 1990], the following four-step NTT
algorithm is derived:

Step 1: n,; simultaneous n,-point multirow NTTs
Step 2: Twiddle factor (w,ﬁlkz) multiplication
Step 3: Transposition

Step 4: n, simultaneous n,-point multirow NTTs

2024/3/7 SIAM PP24

15

Parallel NTT Algorithm Based on
Four-Step Il\\,lTT

N,

Rearrange 2 Perform
with All-to- twiddle factor
all comm. (w#KZ)

Ny multiplication
Transpose
with All-to-

Rearrange N; all comm.

with All-to-
all comm.

W8 P,| P,| P, | P; N

2024/3/7 SIAM PP24 16

Parallelization of Four-Step NTT

#pragma acc data present(a[0:nn], b[0:nn], wx[0:nx/2], wy[0:ny/2], w[0:nn]) {
[* Step 1: Rearrange (nx / nproc) * nproc * (ny / nproc)
to (nx / nproc) * (ny / nproc) * nproc */

#pragma acc parallel loop collapse(3)

for (k = 0; k < nproc; k++)

for (j = 0; j < nny; j++)
for (i=0;i < nnx; i++)
bli+j*nnx+Kk*(nnx * nny)]=ali + k* nnx +j * (nnx * nproc)];

[* Step 2: All-to-all communication */
#pragma acc host_data use device(a, b)

MPI_Alltoall(b, nn / nproc, MPl_UNSIGNED LONG LONG, a, nn/ nproc,

MPI_UNSIGNED LONG_LONG, MPI_COMM_WORLD);

[* Step 3: (nx / nproc) simultaneous ny-point multirow NTTs */

nttsub(a, b, wy, nnx, ny, ipy, np, mu);

2024/3/7 SIAM PP24

Performance Results

* For performance evaluation, we compared
the performance of the following parallel
NTTs with a modulus of 63 bits:

— MPI1+OpenACC (GPU implementation) of the
four-step NTT

— MPI1+OpenMP (CPU implementation) of the
six-step NTT [Takahashi 2022]

* The giga-operations per second (Gops)
values are each based on (3/2)N log, N for
a transform of size N = 2™.

2024/3/7 SIAM PP24 18

Evaluation Environment

* The performance was measured on the Pegasus,
a GPU cluster at the University of Tsukuba.
— 120 nodes, Peak 6.5 PFlops

— CPU: Intel Xeon Platinum 8468
(48 cores, 2.1 GHz, 3.2 TFlops)

— GPU: NVIDIA H100 Tensor Core GPU with PCle
— Interconnect: NVIDIA Quantum-2 InfiniBand (200 Gbps)
— Compiler: NVIDIA HPC Compilers 23.9
— MPI library: OpenMPI1 4.1.5
— Compiler option:
“-fast -acc=gpu -gpu=cc90 (for GPU implementation)
“-fast -mp -tp=sapphirerapids (for CPU implementation)
 Each node has 48 cores and 1 MPI process.

2024/3/7 SIAM PP24

19

1000

100

Gops

10

2024/3/7

Performance of Parallel NTTs
(N = 239 x number of nodes)

—
.

1 2 4 8 16 32
Number of nodes

—-—-GPU —-GPU + memcpy CPU

SIAM PP24 20

Breakdown of Execution Time of
GPU and CPU implementations
(N = 239 x number of nodes)

,

gpu cpu gpu cpu gpu cpu gpu cpu gpu cpu gpu cpu
1 node 2 node& 4 nodes 8 nodes. 16 nodes 32 nodes
® Communication m Computation

Time (sec)
w n

N

2024/3/7 SIAM PP24 21

Discussion

In the case of using GPUs, the computation time is
reduced as compared with the case of using CPUs only,
whereas the communication time is almost the same.

We can clearly see that the all-to-all communication
overhead contributes significantly to the execution time.

For this reason, the difference in performance between
GPU implementation and CPU implementation decreases
as the number of nodes increases.

PCle transfer is the chief bottleneck because the
bandwidth of PCle Gen 5 is only 128 GB/s, whereas the
memory bandwidth of NVIDIA H100 Tensor Core GPU
with PCle is 2000 GB/s.

2024/3/7 SIAM PP24 22

Performance of All-to-all Communication
(32 nodes, 32 MPI processes)

18
16
14

GB/s
)

oSO N b~ OO

2024/3/7

16
32

64
128
256
512

Y ¥ X X
~— N < ©

16K
32K
64K
128K
256K
512K

Message size (bytes)

—--GPU-GPU --CPU-CPU

SIAM PP24

1M
2M
4M
8M
16M

32M

64M
128M
256M

23

Conclusion

We proposed the implementation of the parallel
NTT on GPU clusters.

The butterfly operation of the NTT can be
performed using modular addition, subtraction,
and multiplication.

We parallelized the four-step NTT using MPI and
OpenACC.

We successfully achieved a performance of over
745 Gops on 32 nodes of the Pegasus (120
nodes) for a 23°>-point NTT with a modulus of 63
bits.

2024/3/7 SIAM PP24

24

	MS52�Next Generation FFT Algorithms in Theory and Practice: Parallel Implementations and Applications
	Aim of this minisymposium
	MS52
	Implementation of Parallel�Number-Theoretic Transform on�GPU Clusters
	Outline
	Background
	Related Works (1/2)
	Related Works (2/2)
	Objectives
	Number-Theoretic Transform (NTT)
	Stockham Radix-2 NTT Algorithm
	Modular Arithmetic in NTT
	Montgomery Multiplication Algorithm [Montgomery 1985]
	Modular Multiplication
	Four-Step NTT Algorithm
	Parallel NTT Algorithm Based on�Four-Step NTT
	Parallelization of Four-Step NTT
	Performance Results
	Evaluation Environment
	Performance of Parallel NTTs�(𝑁= 2 30 × number of nodes)
	Breakdown of Execution Time of�GPU and CPU implementations�(𝑁= 2 30 × number of nodes)
	Discussion
	Performance of All-to-all Communication�(32 nodes, 32 MPI processes)
	Conclusion

