
1

Latest Advancements on Parallel and
Distributed FFT Computation on NVIDIA GPUs
Miguel Ferrer Avila; Josh Romero; Łukasz Ligowski; Filippo Spiga;

SIAM Conference on Parallel Processing for Scientific Computing 2024

2

• The NVIDIA FFT Ecosystem

• cuFFT: Just-In-Time, Link-Time Optimized Kernels

• cuFFTDx: Math Device eXtensions for FFTs

• cuFFTMp: Awesome Scalability

• cuDecomp: Adaptive Pencil Decomposition Library

• NVPL FFT: Beyond the GPU

• Conclusions, Acknowledgements and Contact

Agenda

3

The NVIDIA FFT Ecosystem
One Transform, Many Flavors

• NVPL FFT: Part of the NVIDIA NVPL package
• cuFFT: Part of the CUDA Toolkit and NVIDIA HPC SDK
• cuFFT LTO EA: Stand-alone preview binary
• cuFFTMp: Part of the NVIDIA HPC SDK
• cuDecomp: Available as OSS on the NVIDIA Github
• cuFFTDx: Part of the Device eXtensions package

Call for
feedback!

https://developer.nvidia.com/nvpl
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/hpc-sdk
https://developer.nvidia.com/cufftea
https://developer.nvidia.com/hpc-sdk
https://github.com/NVIDIA/cuDecomp
https://developer.nvidia.com/cufftdx-downloads

4

cuFFT: Just-In-Time, Link-Time Optimized Kernels
Combinatorial explosion

• Why Link-Time Optimization?

• Offline (pre)-compiled kernels:

• JIT LTO kernels:

• Users can provide their own LTO pieces:

C2C,
R2C,
C2R

double,
float,
half…

Cooley-Tukey,
Rader,

Bluestein…

32-bit index,
64-bit index

callback,
normalization,

zero pad…
GPU archX X X X X

User-defined
convolution

O

C2C,
R2C,
C2R

double,
float,
half…

Cooley-Tukey,
Rader,

Bluestein…

32-bit index,
64-bit index

callback,
normalization,

zero pad…
GPU arch+ + + + +O

https://developer.nvidia.com/blog/improving-gpu-app-performance-with-cuda-11-2-device-lto/

5

cuFFT: Just-In-Time, Link-Time Optimized Kernels
Runtime optimization and fusion with user code

• cuFFT + LTO available in CUDA Toolkit 12.4
• 64-bit index kernels

• Soon:
• Improved performance of R2C / C2R, and other kernels
• Normalization
• Zero padding
• Mixed precision (read/write float, compute double) ?

• cuFFT + LTO user callbacks available as preview in
cuFFT LTO EA

• LTO callbacks available on Windows

• Considerations:
• Opt-in LTO kernels via cufftSetPlanProperty
• User LTO code:

• Provide function name to cuFFT via API
Call fo

r

feedback!

https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html
https://docs.nvidia.com/cuda/cufft/ltoea/usage/jit_lto.html

6

cuFFTDx: Math Device eXtensions for FFTs
Build-Your-Own FFT kernels

• cuFFTDx is a C++, header-only library that enables
inlining performant FFT computation in user kernels

• The FFT block can be configured to the user kernel
requirements

• Write your own convolution in a single kernel!
• Example: Hyena convolution operator for LLM

• Best suited for cases where the data fits in shared
memory / registers

• Designed to work with other Device Extension libraries

Call for
feedback!

https://docs.nvidia.com/cuda/cufftdx/index.html
https://github.com/NVIDIA/CUDALibrarySamples/blob/master/MathDx/cuFFTDx/convolution_r2c_c2r.cu
https://github.com/HazyResearch/safari/blob/main/csrc/fftconv/fftconv_cuda.cu

7

cuFFTDx + cuBLASDx
Build-Your-Own Math kernels

• New features:
• Interoperability with cuBLASDx (available January 2024)

• Support for larger R2C / C2R FFT sizes (soon)
• Up to 64k for single- and half-precision
• Up to 32k for double-precision

• Improved performance in R2C / C2R (soon)

https://docs.nvidia.com/cuda/cublasdx/
https://github.com/NVIDIA/CUDALibrarySamples/blob/master/MathDx/cuBLASDx/gemm_fft.cu

8

cuFFTDx: Math Device eXtensions for FFTs
Beyond C++

• Can we leverage the same functionality on a higher-level?
• For example, faster kernel prototyping with python

• In this hypothetical example:
• We create an FFT object from cuFFTDx
• We query the FFT object properties
• We write a forward + normalization + inverse kernel, using the FFT

object properties
• We run the kernel

• Can we combine cuFFTDx and a tool like Numba to enable runtime
finalized Python kernels?

• The resulting kernel should have comparable performance to an
equivalent CUDA C++ kernel?

Call fo
r

feedback!

9

cuFFTMp: Awesome Scalability
Distributed FFTs at Speed-Of-Light

• cuFFTMp is a distributed-memory FFT library, currently shipped as EA preview in the NVIDIA HPC SDK

• cuFFTMp supports 2D and 3D FFTs, using slab (1D) and pencil (2D) data decompositions with arbitrary
block sizes

• MPI-compatible interface, optimized for single node and multi-node.

• General release later this year with support for minor-version compatibility

https://docs.nvidia.com/hpc-sdk/cufftmp/index.html
https://developer.nvidia.com/hpc-sdk

10

cuFFTMp: Awesome Scalability
Strong scalability powered by NVSHMEM

• cuFFTMp leverages NVSHMEM to achieve
strong scalability and low-latency

• NVSHMEM: PGAS library for NVIDIA clusters
• Based on OpenSHMEM
• Asynchronous, low-overhead comms initiated by

CUDA threads
• MPI, OpenSHMEM interoperability

• Should we take it one step further?
• NVSHMEM + cuFFTDx kernels…
• … managed and run by a python application?

Call for
feedback!

https://developer.nvidia.com/nvshmem

11

cuDecomp: Adaptive Pencil Decomposition Library
Build your own performant distributed FFTs!

NCCL

NVSHMEM

MPI
OpenMPI

Spectrum MPI
Cray MPICH

Pack (batched) Alltoall Unpack (batched)

Pack

SendRecv

UnpackPack Pack Pack

SendRecv SendRecv SendRecv

Unpack Unpack Unpack

wall time

Pairwise SendRecv with
pipelining

Blocking A2A without pipelining

Selects best 2D process distribution Selects best communication library

Multiple high-level implementations available

• cuDecomp: slab / pencil decomposition for global transposition beyond FFTs (e.g. tridiagonal solvers)
• Inspired by 2DECOMP&FFT library, but GPU-centric with C/C++ and Fortran support
• Runtime auto-tuning of data distribution schema and communication backend (MPI, NCCL, NVSHMEM)

12

cuDecomp: Autotuning Sample Results
4096 x 8192 x 8192 Grid, Single Complex Precision

Eos (64 Node)

13

NVPL FFT: Beyond the GPU
Beta 2 performance results on Grace Superchip

• NVPL FFT is an FFT library optimized for ARM CPUs, targeting the Grace Superchip

• Single-thread and multi-thread routines (based on GNU OpenMP)

• Beta 2 coming soon, with improved performance

https://docs.nvidia.com/nvpl/_static/fft/index.html

14

NVPL FFT: Beyond the GPU
Beta 2 performance results on Grace Superchip

• Performance optimization is ongoing
• Test your app, tell us where to improve

• Please share your use cases with us!

Call for
feedback!

15

Roadmap
Building our roadmap based on our users’ needs

* Roadmap is
tentative and

subject to change

16

Acknowledgments and Contact
We need your feedback

• We need your input:
• Use cases (problem characteristics, platforms, needs)
• Feedback on our existing products and/or previews

• Contact us:
• Łukasz Ligowski (FFT Engineering Manager), lligowski@nvidia.com
• Miguel Ferrer Avila (FFT Library Lead), mferreravila@nvidia.com
• Jakub Szuppe (Device eXtensions Lead), jszuppe@nvidia.com
• Josh Romero (cuDecomp Lead), joshr@nvidia.com
• Arthy Sundaram (CUDA Math Product Manager), asundaram@nvidia.com
• Filippo Spiga (HPC Developer Relations Manager), fspiga@nvidia.com

• Acknowledgements and thank you:
• cuFFT Team and NVIDIA
• Prof. Daisuke Takahashi

Call for
feedback!

mailto:lligowski@nvidia.com
mailto:mferreravila@nvidia.com
mailto:jszuppe@nvidia.com
mailto:joshr@nvidia.com
mailto:asundaram@nvidia.com
mailto:fspiga@nvidia.com

17

Thank you!

