
FFTW++: A Hybrid OpenMP/MPI
Implementation of FFTs and Implicitly

Dealiased Convolutions

John C. Bowman Malcolm Roberts

University of Alberta Advanced Micro Devices

Feb 14, 2020

www.math.ualberta.ca/∼bowman/talks
1



Discrete Cyclic Convolution

•The FFT provides an efficient tool for computing the discrete
cyclic convolution

N−1∑
p=0

FpGk−p,

where the vectors F and G have period N .

•Define the N th primitive root of unity:

ζN = exp

(
2πi

N

)
.

•The fast Fourier transform method exploits the properties that
ζrN = ζN/r and ζNN = 1.

•However, the pseudospectral method requires a linear
convolution.

2



•The unnormalized backwards discrete Fourier transform of
{Fk : k = 0, . . . , N} is

fj
.
=

N−1∑
k=0

ζjkN Fk j = 0, . . . , N − 1.

•The corresponding forward transform is

Fk
.
=

1

N

N−1∑
j=0

ζ−kjN fj k = 0, . . . , N − 1.

•The orthogonality of this transform pair follows from

N−1∑
j=0

ζ`jN =


N if ` = sN for s ∈ Z,
1− ζ`NN
1− ζ`N

= 0 otherwise.

3



Convolution Theorem

N−1∑
j=0

fjgjζ
−jk
N =

N−1∑
j=0

ζ−jkN

N−1∑
p=0

ζjpN Fp

N−1∑
q=0

ζjqNGq


=

N−1∑
p=0

N−1∑
q=0

FpGq

N−1∑
j=0

ζ
(−k+p+q)j
N

= N
∑
s

N−1∑
p=0

FpGk−p+sN .

•The terms indexed by s 6= 0 are aliases; we need to remove
them!

• If only the firstm entries of the input vectors are nonzero, aliases
can be avoided by zero padding input data vectors of length m
to length N ≥ 2m− 1.

•Explicit zero padding prevents mode m− 1 from beating with
itself and wrapping around to contaminate modeN = 0 modN .

4



• Since FFT sizes with small prime factors in practice yield
the most efficient implementations, the padding is normally
extended to N = 2m:

{Fk}m−1
k=0 {Gk}m−1

k=0

5



• Since FFT sizes with small prime factors in practice yield
the most efficient implementations, the padding is normally
extended to N = 2m:

{Fk}m−1
k=0 {Gk}m−1

k=0

{Fk}m−1
k=0 {0}m−1

k=0 {Gk}m−1
k=0 {0}m−1

k=0

5



• Since FFT sizes with small prime factors in practice yield
the most efficient implementations, the padding is normally
extended to N = 2m:

{Fk}m−1
k=0 {Gk}m−1

k=0

{Fk}m−1
k=0 {0}m−1

k=0 {Gk}m−1
k=0 {0}m−1

k=0

{fj}2m−1
j=0

FFT−1

{gj}2m−1
j=0

FFT−1

5



• Since FFT sizes with small prime factors in practice yield
the most efficient implementations, the padding is normally
extended to N = 2m:

{Fk}m−1
k=0 {Gk}m−1

k=0

{Fk}m−1
k=0 {0}m−1

k=0 {Gk}m−1
k=0 {0}m−1

k=0

{fj}2m−1
j=0

FFT−1

{gj}2m−1
j=0

FFT−1

{fjgj}2m−1
j=0

5



• Since FFT sizes with small prime factors in practice yield
the most efficient implementations, the padding is normally
extended to N = 2m:

{Fk}m−1
k=0 {Gk}m−1

k=0

{Fk}m−1
k=0 {0}m−1

k=0 {Gk}m−1
k=0 {0}m−1

k=0

{fj}2m−1
j=0

FFT−1

{gj}2m−1
j=0

FFT−1

{fjgj}2m−1
j=0

{F ∗G}m−1
k=0

FFT

5



• Since FFT sizes with small prime factors in practice yield
the most efficient implementations, the padding is normally
extended to N = 2m:

{Fk}m−1
k=0 {Gk}m−1

k=0

{Fk}m−1
k=0 {0}m−1

k=0 {Gk}m−1
k=0 {0}m−1

k=0

{fj}2m−1
j=0

FFT−1

{gj}2m−1
j=0

FFT−1

{fjgj}2m−1
j=0

{F ∗G}m−1
k=0

FFT

F ∗G

5



Implicit Padding

•Let N = 2m. For j = 0, . . . , 2m− 1 we want to compute

fj =

2m−1∑
k=0

ζjk2mFk.

• If Fk = 0 for k ≥ m, one can easily avoid looping over the
unwanted zero Fourier modes by decimating in wavenumber:

f2` =

m−1∑
k=0

ζ2`k2mFk =

m−1∑
k=0

ζ`kmFk, ` = 0, 1, . . .m− 1.

f2`+1 =

m−1∑
k=0

ζ
(2`+1)k
2m Fk =

m−1∑
k=0

ζ`km ζ
k
2mFk,

•This requires computing two subtransforms, each of size m,
for an overall computational scaling of order 2m log2m =
N log2m.

6



•Odd and even terms of the convolution can then be computed
separately, multiplied term-by-term, and transformed again to
Fourier space:

2mFk =

2m−1∑
j=0

ζ−kj2m fj

=

m−1∑
`=0

ζ−k2`2m f2` +

m−1∑
`=0

ζ
−k(2`+1)
2m f2`+1

=

m−1∑
`=0

ζ−k`m f2` + ζ−k2m

m−1∑
`=0

ζ−k`m f2`+1 k = 0, . . . ,m− 1.

•No bit reversal is required at the highest level.

•A 1D implicitly padded convolution is implemented in our
FFTW++ library.

•This in-place convolution was written to use six out-of-place
transforms, thereby avoiding bit reversal at all levels.

7



•The computational complexity is 6Km log2m.

•The numerical error is similar to explicit padding and the
memory usage is identical.

{Fk}m−1
k=0 {Gk}m−1

k=0

8



•The computational complexity is 6Km log2m.

•The numerical error is similar to explicit padding and the
memory usage is identical.

{Fk}m−1
k=0 {Gk}m−1

k=0

{f2ℓ}m−1
ℓ=0 {f2ℓ+1}m−1

ℓ=0 {g2ℓ}m−1
ℓ=0 {g2ℓ+1}m−1

ℓ=0

8



•The computational complexity is 6Km log2m.

•The numerical error is similar to explicit padding and the
memory usage is identical.

{Fk}m−1
k=0 {Gk}m−1

k=0

{f2ℓ}m−1
ℓ=0 {f2ℓ+1}m−1

ℓ=0 {g2ℓ}m−1
ℓ=0 {g2ℓ+1}m−1

ℓ=0

{f2ℓg2ℓ}m−1
ℓ=0 {f2ℓ+1g2ℓ+1}m−1

ℓ=0

8



•The computational complexity is 6Km log2m.

•The numerical error is similar to explicit padding and the
memory usage is identical.

{Fk}m−1
k=0 {Gk}m−1

k=0

{f2ℓ}m−1
ℓ=0 {f2ℓ+1}m−1

ℓ=0 {g2ℓ}m−1
ℓ=0 {g2ℓ+1}m−1

ℓ=0

{f2ℓg2ℓ}m−1
ℓ=0 {f2ℓ+1g2ℓ+1}m−1

ℓ=0

{(F ∗G)k}m−1
k=0

8



Input: vector f, vector g
Output: vector f
u← fft−1(f);
v← fft−1(g);
u← u ∗ v;
for k = 0 to m− 1 do
f[k]← ζk2mf[k];

g[k]← ζk2mg[k];
end

v← fft−1(f);
f ← fft−1(g);
v← v ∗ f;
f ← fft(u);
u← fft(v);

for k = 0 to m− 1 do
f[k]← f[k] + ζ−k2mu[k];

end
return f/(2m);

9



Implicit Padding in 1D

2

3

4

5

6

7

ti
m
e/
(m

lo
g
2
m
)
(n
s)

102 103 104 105 106
m

explicit T=1

implicit T=1

explicit T=4

implicit T=4

10



Convolutions in Higher Dimensions

•An explicitly padded convolution in 2 dimensions requires 12
padded FFTs, and 4 times the memory of a cyclic convolution.

F G

11



Convolutions in Higher Dimensions

•An explicitly padded convolution in 2 dimensions requires 12
padded FFTs, and 4 times the memory of a cyclic convolution.

F GF G

11



Convolutions in Higher Dimensions

•An explicitly padded convolution in 2 dimensions requires 12
padded FFTs, and 4 times the memory of a cyclic convolution.

F GF G

f g

11



Convolutions in Higher Dimensions

•An explicitly padded convolution in 2 dimensions requires 12
padded FFTs, and 4 times the memory of a cyclic convolution.

F GF G

f g

fg

11



Convolutions in Higher Dimensions

•An explicitly padded convolution in 2 dimensions requires 12
padded FFTs, and 4 times the memory of a cyclic convolution.

F GF G

f g

fg

F ∗G

11



Convolutions in Higher Dimensions

•An explicitly padded convolution in 2 dimensions requires 12
padded FFTs, and 4 times the memory of a cyclic convolution.

F GF G

f g

fg

F ∗GF ∗G

11



Recursive Convolution

•Naive way to compute a multiple-dimensional convolution:

FN1,...,Nd multiply F−1
N1,...,Nd

•The technique of recursive convolution allows one to avoid
computing and storing the entire Fourier image of the data:

FNd
Nd× convolveN1 ,...,Nd−1 F−1

Nd

12



Implicit Padding in 2D

•Extra work memory need not be contiguous with the data.

F G

13



Implicit Padding in 2D

•Extra work memory need not be contiguous with the data.

FFT−1
x {F}

nx even

FFT−1
x {F}

nx odd

FFT−1
x {G}

nx even

FFT−1
x {G}

nx odd

13



Implicit Padding in 2D

•Extra work memory need not be contiguous with the data.

13



Implicit Padding in 2D

•Extra work memory need not be contiguous with the data.

13



Implicit Padding in 2D

•Extra work memory need not be contiguous with the data.

13



Implicit Padding in 2D

•Extra work memory need not be contiguous with the data.

FFT−1
x {F ∗G}
nx even

FFT−1
x {F ∗G}
nx odd

13



Implicit Padding in 2D

•Extra work memory need not be contiguous with the data.

F ∗G

13



Implicit Padding in 2D

5

10

15

ti
m
e/
(m

2
lo
g
2
m

2
)
(n
s)

102 103
m

explicit T=1

implicit T=1

explicit T=4

implicit T=4

14



Implicit Padding in 3D

10

20
ti
m
e/
(m

3
lo
g
2
m

3
)
(n
s)

101 102
m

explicit T=1

implicit T=1

explicit T=4

implicit T=4

15



Centered (Pseudospectral) Convolutions

•For a centered convolution, the Fourier origin (k = 0) is
centered in the domain:

m−1∑
p=k−m+1

fpgk−p

•Need to pad to N ≥ 3m− 2 to remove aliases.

•The ratio (2m− 1)/(3m− 2) of the number of physical to total
modes is asymptotic to 2/3 for large m .

•A Hermitian convolution arises since the input vectors are real:

f−k = fk.

16



1D Implicit Hermitian Convolution

2

3

4

5

ti
m
e/
(m

lo
g
2
m
)
(n
s)

102 103 104 105 106
m

explicit T=1

implicit T=1

explicit T=4

implicit T=4

17



Distributed-Memory Parallelization

•The pseudospectral method uses a matrix transpose to localize
the computation of the multi-dimensional FFTs onto individual
processors.

•Parallel generalized slab/pencil decompositions have recently
been developed for distributed-memory architectures.

•We have compared several distributed matrix transpose
algorithms, both blocking and nonblocking, under pure MPI
and hybrid MPI/OpenMP architectures.

•Local transposition is not required within a single MPI node.

•We have developed an adaptive algorithm, dynamically tuned
to choose the optimal block size.

18



8× 8 Block Transpose over 8 processors

0

1

2

3

4

5

6

7

P
ro
ce
ss

19



8× 8 Block Transpose over 8 processors

0

1

2

3

4

5

6

7

P
ro
ce
ss

19



8× 8 Block Transpose over 8 processors

0

1

2

3

4

5

6

7

P
ro
ce
ss

19



8× 8 Block Transpose over 8 processors

0

1

2

3

4

5

6

7

P
ro
ce
ss

19



8× 8 Block Transpose over 8 processors

0

1

2

3

4

5

6

7

P
ro
ce
ss

19



8× 8 Block Transpose over 8 processors

0

1

2

3

4

5

6

7

P
ro
ce
ss

19



8× 8 Block Transpose over 8 processors

0

1

2

3

4

5

6

7

P
ro
ce
ss

19



Advantages of Hybrid MPI/OpenMP

•Use hybrid OpenMP/MPI with the optimal number of threads:

– yields larger communication block size;

– local transposition is not required within a single MPI node;

– allows smaller problems to be distributed over a large number
of processors;

– for 3D FFTs, allows for more slab-like than pencil-like models,
reducing the size of or even eliminating the need for a second
transpose;

– sometimes more efficient (by a factor of 2) than pure MPI.

•The use of nonblocking MPI communications allows us to
overlap computation with communication: this can yield up
to an additional 32% performance gain for implicitly dealiased
convolutions, for which a natural parallelism exists between
communication and computation. 20



Pure MPI 2D Convolutions

1

2

3

ti
m
e/
(m

2
lo
g
2
m

2
)
(n
s)

102 103 104
m

implicit P=24

implicit P=192

explicit P=24

explicit P=192

21



Pure MPI 3D Convolutions

1

2

3

4
ti
m
e/
(m

3
lo
g
2
m

3
)
(n
s)

102 103
m

implicit P=24

implicit P=192

explicit P=24

explicit P=192

22



Hybrid MPI 3D Adaptive Transpose Timing

23

https://www.math.ualberta.ca/~bowman/asygl/siam20/adaptiveTranspose.html


Hybrid MPI 3D Adaptive Transpose Speedup

24

https://www.math.ualberta.ca/~bowman/asygl/siam20/speedupTranspose.html


Communication Costs: Direct Transpose

• Suppose an N ×N matrix is distributed over P processes with
P | N .

•Direct transposition involves P−1 communications per process,
each of size N 2/P 2, for a total per-process data transfer of

P − 1

P 2
N 2.

25



Block Transpose

•Let P = ab. Subdivide N ×M matrix into a × a blocks each
of size N/a×M/a.

• Inner: Over each team of b processes, transpose the a individual
N/a×M/a matrices, grouping all a communications with the
same source and destination together.

•Outer: Over each team of a processes, transpose the a×amatrix
of N/a×M/a blocks.

26



Communication Costs

•Let τ` be the typical latency of a message and τd be the time
required to send each matrix element, so that the time to send
a message consisting of n matrix elements is

τ` + nτd

.

•The time required to perform a direct transpose is

TD = τ`(P − 1) + τd
P − 1

P 2
NM = (P − 1)

(
τ` + τd

NM

P 2

)
,

whereas a block transpose requires

TB(a) = τ`

(
a +

P

a
− 2

)
+ τd

(
2P − a− P

a

)
NM

P 2
.

•Let L = τ`/τd be the effective communication block length.

27



Direct vs. Block Transposes

• Since

TD − TB = τd

(
P + 1− a− P

a

)(
L− NM

P 2

)
,

we see that a direct transpose is preferred when NM ≥ P 2L,
whereas a block transpose should be used when NM < P 2L.

•To find the optimal value of a for a block transpose consider

T ′B(a) = τd

(
1− P

a2

)(
L− NM

P 2

)
.

•For NM < P 2L, we see that TB is convex, with a minimum at
a =
√
P .

28



Optimal Number of Threads

•The minimum value of TB is

TB(
√
P ) = 2τd

(√
P − 1

)(
L +

NM

P 3/2

)
∼ 2 τd

√
P

(
L +

NM

P 3/2

)
, P � 1.

•The global minimum of TB over both a and P occurs at

P ≈ (2NM/L)2/3.

• If the matrix dimensions satisfy NM > L, as is typically
the case, this minimum occurs above the transition value
(NM/L)1/2.

29



Transpose Communication Costs

104

105

106

C
om

m
u
n
ic
at
io
n
C
os
t

101 102 103

P

100

101

102

103

Zero Latency

Direct

Block

Threads

30



Conclusions

•For centered convolutions in d dimensions implicit padding
asymptotically uses (2/3)d−1 of the conventional storage.

•The factor of 2 speedup is largely due to increased data locality.

•Highly optimized and parallelized implicit dealiasing routines
have been implemented as a software layer FFTW++ (v 2.05) on
top of the FFTW library and released under the Lesser GNU
Public License: http://fftwpp.sourceforge.net/

•Hybrid MPI/OpenMP is often more efficient than pure MPI for
distributed matrix transposes.

•The hybrid paradigm provides an optimal setting for nonlocal
computationally intensive operations found in applications like
the fast Fourier transform.

•The advent of implicit dealiasing of convolutions makes
overlapping transposition with FFT computation feasible.

31

http://fftwpp.sourceforge.net/


•Writing of a high-performance dealiased pseudospectral code is
now a relatively straightforward exercise. For example, see the
protodns project at

http://github.com/dealias/dns

32

http://github.com/dealias/dns


References
[Bowman & Roberts 2011] J. C. Bowman & M. Roberts, SIAM J. Sci. Comput., 33:386, 2011.

[Bowman & Roberts 2016] J. C. Bowman & M. Roberts, to be submitted to Parallel computing, 2016.

[Orszag 1971] S. A. Orszag, Journal of the Atmospheric Sciences, 28:1074, 1971.

[Patterson Jr. & Orszag 1971] G. S. Patterson Jr. & S. A. Orszag, Physics of Fluids, 14:2538, 1971.

[Roberts & Bowman 2016] M. Roberts & J. C. Bowman, submitted to SIAM J. Sci. Comput., 2016.


