
Designing an adaptable framework
for highly scalable multidimensional

spectral transforms

Dmitry Pekurovsky
UC San Diego

Importance of Spectral Transforms @
Exascale

• Includes FFTs but is more general
• Ubiquitous algorithm in many areas of science/engineering
• Responsible for a large portion of cycles consumed on modern

supercomputers
• Can be the limiting factor for bringing codes to Exascale

• Exascale potential not realized in a number of important fields

WHAT CAN BE DONE TO RECONCILE SPECTRAL TRANSFORMS AND
EXASCALE?

WHAT CAN BE DONE TO INCREASE THE RANGE OF USE BEYOND
TRADITIONAL DNS TURBULENCE CODES?

CAN PERFORMANCE AND FLEXIBILITY BE COMBINED?

Common Properties of Spectral Transforms
in Multiple Dimensions

• Easily broken down into independent 1D transform
components (example: 3D FFT)

• Each 1D component transform is non-local, i.e. uses heavily
all data in given dimension
• Best suited for node-local implementation, i.e. no inter-processor

communication during the 1D transform
• Algorithm typically reshuffles data among processors between

consecutive 1D transforms
• Limited by bisection bandwidth
• Also limited by node memory bandwidth (see e.g. McClanahan 2011)

• Recognized as a serious challenge for Exascale

3D FFT algorithm with
2D decomposition

Y-Z plane
exchange in
column
subgroups

Z
Y

X

X-Y plane
exchange
in row
subgroups

Perform 1D FFT in X Perform 1D FFT in Y Perform 1D FFT in Z

Y-Z plane exchange in column subgroups

Z

Y

X

X-Y plane exchange in row subgroups

Perform 1D FFT in X

Perform 1D FFT in Y

Perform 1D FFT in Z

Existing work
• Many open source implementations available for 3D FFT

(also many proprietary ones)
• FFTW, FFTE, P3DFFT, OpenFFT, AccFFT, PFFT, NBFFT etc

• Each has areas of emphasis
• Traditionally focused on DNS turbulence style codes
• All have restricted data layouts
• Few support overlapping communication
• Few support GPUs
• Few support pruned and/or sparse FFTs
• Few are optimal both in large and small grid range

Expanding functionality

• Spectral Transforms: a diverse ecosystem
• Varied boundary conditions
• Varied data types
• Varied data layout
• Varied processor decomposition
• Special cases and potential for optimization:

• Pruned/sparse transforms
• Multivariable transforms
• Higher-order operators: derivatives, convolutions, Laplacian etc
• Large vs. small grid sizes

Performance Strategy 1

Exascale performance is sub-par, try to minimize the damage.
 Reduce the volume of data sent across the network and to/from

memory: employ pruned and/or sparse FFTs where possible
Pruned transform: use same algorithm (e.g. FFT), after 1D
transform of size N keep n < N modes.

Example: used in dealiasing methods in turbulence simulations (2/3 rule).
Saves volume of communication by close to 50% for cubic grids. Also
saves compute time and memory access time.

Sparse transform: specialized algorithm for cases with n << N.
Can be faster than full FFT.

Performance Strategy 2

Combine multiple transforms into a single call
Aggregate messages
Overlap communication with computation

FFTx-2 Comm1-1 Comm1-2FFTy-2 FFTz-1Comm1-1 Comm2-2FFTy-1

FFTx-1 Comm1-
FFTx-2
Comm1-1

Comm1-2
FFTy-1

FFTy-2
Comm2-1

Comm2-2
FFTz-1

FFTz-2

FFTx-1 FFTz-2

Performance Strategy 3

Reduce number of memory reads/writes
• Reduce the number of local memory transpositions
• Optimize cache use for non-unit-stride reads/writes
• Reduce array copies
• Reuse cache by performing several operations in a single

loop

Example of cache reuse
• Attempt to combine pairs of the following three operations on slices of the

whole array, to reuse cache:
1. 1D transform (stride-1)
2. Local memory reordering.
3. Pack/unpack of send/receive buffer for interprocessor communication.

for(k=0;k<N;k++) // Do one k-slice – this often fits in 1 cache line

for(j=0;j<N;j++) {
Transform1D(&A[k][j][0]);
for(ip=0;ip < Ntasks;ip++) {
Nstart = N/Ntasks*ip; Nend = Nstart + N/Ntasks;

for(i=Nstart;i<Nend;i++)
sendbuf[ip][k][i][j] = A[k][j][i];

}
}

MPI_Alltoall(sendbuf,…);

Performance, contd.

• Strategy 4: Utilize accelerators
• CUDA implementation

• Strategy 5: Autotuning: select best execution path;
communication method; best decomposition etc

P3DFFT++ Framework and design
• Open source package, with examples and

documentation
• Distinct code from exiting P3DFFT package
• Object-oriented, modular design, hides platform and

implementation details
• Written in C++, with C and Fortran interfaces
• Compute-intensive parts written in C-style code to

optimize performance
• Highly flexible data layout

P3DFFT++ Framework and design,
contd.

• Uses MPI, eventually combined with OpenMP and
CUDA

• Supports multiple transform types (beyond FFT)
• Provides convenience functions for data

manipulations
• (Work in progress) Autotuning to select fastest

algorithm
• Similar to most libraries, offloads 1D transforms to a

specialized library, such as FFTW

Features (current and future)
• Optimized for large core counts (1D, 2D and 3D

decomposition)
• Flexible data layout
• Pruned/sparse transforms
• Multivariable transforms (with overlapping communication)
• GPU-enabled
• 3D and 4D transforms
• Autotuning for best algorithm
• Higher-order functions (derivative/Laplacian/convolution etc)

Some details of implementation
• Data types: real/complex, single/double precision
• Functions and classes expressed as C++ templates, with

interfaces for C and Fortran
• Low level functions: combinations of 1D transform/derivative,

local transposition, interprocessor transposition – accessible
to the user.

• 1D transform types: designed as general as possible, with
FFTW currently serving as reference implementation.

• Higher level functions: 3D transforms (future: 4D transforms,
correlation functions, Laplacian etc)

• Execution model: planner and execution functions, similar to
FFTW, plans expressed as C++ classes

Data layout specification

Metadata descriptor grid:
• Data grid size and properties
• Processor grid definition (1D, 2D, 3D)
• Local memory layout (order of dimension storage)

• E.g. (x,y,z), (z,y,x) etc
• Mapping of data grid onto processor grid

• Example: Pgrid = P1 x P2 = 4 x 8. Data grid 323. Map Y dimension
onto P1, Z dimension onto P2. Local dimensions: 32 x 8 x 4. Can
be stored as array A[4][8][32] (default layout (0,1,2)), or A[32][8][4]
(transposed layout (2,1,0)), or any other order

Example of usage
int pgrid1[]={1,2,4};
int mem_order1[] = {0,1,2};
int pgrid2[] = {2,4,1};
int mem_order2[] = {2,1,0};
int proc_order[] = {0,1,2};
int gdims[] = {128,128,128};

grid Grid1(gdims,-1,pgrid1,proc_order,mem_order1,mpicomm);
grid Grid2(gdims,-1,pgrid2,proc_order,mem_order2,mpicomm);

int type_ids[3] = {R2CFFT_D,CFFT_FORWARD_D,CFFT_FORWARD_D};
trans_type3D type_rcc(type_ids1);

transform3D<double,complex_double> trans_rcc(grid1,grid2,&type_rcc);

Example of usage, contd.
int sdims1[3],sdims2[3],glob_start1[3];
for(i=0;i<3;i++) {
sdims1[mem_order1[i]] = grid1.ldims[i];
sdims2[mem_order2[i]] = grid2.ldims[i];
glob_start1[mem_order[i]] = grid1.glob_start[i];
}
int size1 = ldims1[0]*ldims1[1]*ldims1[2];
int size2 = ldims2[0]*ldims2[1]*ldims2[2];
double *IN=new double[size1];
double *OUT=new complex_double[size2];
init_ar(IN,sdims1,glob_start1);
trans_f.exec(IN,OUT,false);

Preliminary performance study
(Stampede2 @ TACC)

0.015625

0.03125

0.0625

0.125

0.25

0.5

1

2

4

256 512 1024 2048 4096 8192 16384

P3DFFT++ vs. P3DFFT

P3DFFT++ 2048^3 P3DFFT 2048^3 P3DFFT++ 1024^3 P3DFFT 1024^3

Conclusions and future work
• A new open source package P3DFFT++

(http://www.p3dfft.net) aims to bridge high performance with
ease of use and increased use range.

• New object-oriented design
• Preliminary performance on par with P3DFFT and similar

libraries.
• Future/in progress work

• GPU/CUDA
• Pruned transforms
• Overlap of communication
• Higher order functions/combinations
• 4D transforms
• Autotuning

http://www.p3dfft.net/

Acknowledgements

• Supported by NSF OAC grants
• XSEDE resources at TACC and SDSC have been

used in this work

	Slide Number 1
	Importance of Spectral Transforms @ Exascale
	Common Properties of Spectral Transforms in Multiple Dimensions
	3D FFT algorithm with �2D decomposition
	Existing work
	Expanding functionality
	Performance Strategy 1
	Performance Strategy 2
	Performance Strategy 3
	Example of cache reuse
	Performance, contd.
	P3DFFT++ Framework and design
	P3DFFT++ Framework and design, contd.
	Features (current and future)
	Some details of implementation
	Data layout specification
	Example of usage
	Example of usage, contd.
	Preliminary performance study (Stampede2 @ TACC)
	Conclusions and future work
	Acknowledgements

