~
/\| A o A 7y 4
recoocee| | o
| B S Il
2 $ 2 mu
o < 6
<, o

BERKELEY LAB b B
University of Tsukuba

Parallel Sparse and Conventional FFTs,
Applications and Implementation

Date: 2/14/2020
Time: 10:55 AM - 12:35 PM & 3:20 PM - 5:00 PM
Room: 505

Aim of this minisymposium :

= The fast Fourier Transform (FFT) is an algorithm used in a wide variety of
applications, yet does not make optimal use of many current and emerging
platforms such as many-core processors, GPUs, and distributed-memory systems.

= Hardware utilization performance on its own does not, however, imply optimal
problem-solving.

= The purpose of this minisymposium is to enable an exchange of information
between people working on FFT algorithms such as sparse and conventional FFTs,
to those working on FFT implementations, in particular for parallel hardware.

MS53 - SIAMPP'20 2/14/19

) Samar Aseeri, PhD PBenson Muite, PhD Fhae
Computational Scientist & Research Fellow of Distributed Systems * |lllil

KAUST University of Tartu o

Meetings To Date

» Birds of Feathers: SC17 and ISC18
» Presentations: SIAM PP 18 and IXPUG Middle East Conference 2018

Press IPUG C\‘ HiPC /&lsc High Performance 0 ;((‘bx_"’

TR P A RS G -

» SIAM-NEWS blog: State-of-the-Art FFT: Algorithms, Implementations, and Applications e
» SIAM-NEWS blog: Next Generation FFT Algorithms in Theory and Practice: Parallel
Implementations, Sparse FFTs, and Applications

Experience
» Benchmarking numerical solution of the Klein-Gordon equation using FFTs
»Period (2014 —present)

Research (selected)

» S. Aseeri, O. Batrasev, M. Icardi, B.Leu, A. Liu, N. Li, B.K. Muite, E. Miller, B. Palen, M. Quell, H. Servat, P.
Sheth, R. Speck, M. Van More, J. Vienne, “Solving the Klein-Gordon equation using Fourier spectral methods: A
benchmark test for computer performance”, ACM DL - Proceedings of the 23rd High Performance Computing
Symposium (HPC 2015), held in Conjunction with 2015 Spring Simulation Multi-Conference, April 2015.

» Aseeri, Samar; Chatterjee, Anando; Keyes, David; Verma, Mahendra. Implementing some Strategies to
Reduce Communication Time of FFT Algorithm. (Paper -YNP))

Project Poster
FEFE
P projl25s: ~
(PP05) The Fast Fourier Transform in the Exascale Era-ISC 2018
‘ mmu'unﬂdmnk
Upcoming Meeting "

Outreach

Pwep page »forum
Pmailing list

Implementing some Strategies
to Reduce Communication
ime of FFT Algorithm

Presenter:

Samar A. Aseeri, PhD

Computational Scientist, ECRC

King Abdullah University of Science & Technology (KAUST), SA

MS53 - SIAMPP'20 2/14/19

Definition of Fourier Transform

* In 1807 Jean Fourier invented a technique to
solve the heat diffusion equation in a conducting
plate with arbitrary forcing. This technique was

the Fourier Transform.

x> k: f(x)= % feikxF(k)dk

00)

k- x:F(k)= fe‘”‘xf(x)dx

— 00

MS53 - STAMPP'20 2/14/19

Cooley and Tukey, 1965

« Cooley and Tukey published a paper on the Fast
Fourier Transform an O(n log n) method for the
calculation of the Discrete Fourier Transform
which is an approximation of the Fourier
Transform which originally is derived from the
Fourier Series.

* The FFT algorithm was developed by Gauss
1805 but this was not recognized until recent
time.

* Time complexity of FFT according to DFT
reduces from 0(n?) to O(n logn).

MS53 - STAMPP'20 2/14/19

Why is it Important?

* It is an important tool for image and signal
processing, radio astronomy, wave propagation
(such as seismic inversion), diffusion (such as

hydrocarbon reservoirs), solid and fluid
mechanics and electromagnetism.

 Itis an accurate and low computational cost
algorithm

* It solves multiscale problems
- Derivatives are simply calculated f™ = (ik)*f

MS53 - STAMPP'20 2/14/19

Limitations

» Efforts to optimize the performance of 3D parallel FFT
libraries have tended to focus on slab and pencil
decompositions.

« Slab decompositions tend to perform well on small process
counts.

» pencil decompositions scale better on large core counts.

« Applications that rely on FFTs adopt different data
decomposition strategies:
* 1D decompositions give each process a complete 2D slab
« 2D decomposition give each process a complete 1D pencil

» 3D decompositions give each process a block that does not span
the global domain in"any dimension

« The main performance bottleneck of parallel 3D FFTs is
the communication. Once 3D data is distributed over MPI
processes, all-to-all communications are unavoidable.

MS53 - STAMPP'20 2/14/19

Parallel Libraries

e FFTW

 FFTE

 FFTK

« 2decomp&fft

« P3DFFT

 PFFT

 OpenFFT

 AccFFT

« GPU FFT and Xion phi FFT
« Hybrid FFT

MS53 - STAMPP'20 2/14/19

Work in Progress

* Introduction

 FFTK Library

« Shaheen Topology

* Allocation Control

« Scaling and Conclusion

MS53 - STAMPP'20 2/14/19

Introduction

* Aim is to speed up FFTs on Cray XC40 machine
by using the full bandwidth offered by the cluster

 For testing we used the FFTK parallel library
developed by collaborators of this work

« Several job placements and reordering cases
were examined and some findings will be
highlighted here

MS53 - STAMPP'20 2/14/19

FFTK Library

» Chatterjee, Verma, and group members of
Kanpur

» Scaled up to 196608 cores of Shaheen Il of
KAUST for 30723

* Tested up 61443 grid
e Fluid solver TARANG uses it

2D pencil decomposition is typically used for
large core counts

MS53 - STAMPP'20 2/14/19

FFTK Library

* The forward transform is given by

]’c‘ — z f(x, y, Z)e—ikxx e—ikyye—ikzz

Kxky.k;

 Algorithm
 FFT along Z axis
« Communicate Z pencils to Y pencils.
 FFT along Y axis
« Communicate Y pencils to X pencils.
 FFT along X axis

MS53 - STAMPP'20 2/14/19

FFTK Library

* Works also for 2D data by setting N, = 1
« Slab FFT can be performed by setting p,-,,, = 1
 Available basis: FFF, SFF, SSF, SSS and ChFF

MS53 - STAMPP'20 2/14/19

Shaheen Topology

* Cray XC40
» 38 fastest supercomputer in the world
* |t consists of about 200000 CPU cores

* |t manages a speed of about 7 Petaflops/s
theoretical peak and 5.5 Petaflops/s of Linpack
performance

* |t uses Dragonfly Topology

MS53 - STAMPP'20 2/14/19

Shaheen Topology

36
Cabinets
@ [
16
blades
3
Chassis
each
blade
has 4
nodes
v
each
node
consists
of 2
sockets
Total compute nodes = 6,174 ef::h with
Total cores = 197,568 ores
Each group consists of 171 + 172 compute nodes Each group consists of 21 + 20 server
nodes

MS53 - SIAMPP'20 2/14/19

Shaheen Topology

(7 (17 iy

MS53 - SIAMPP'20 2/14/19

Allocation Control

* Optimize Communication
 Grid ordering
« Contiguous Nodes
» Job Placement

MS53 - STAMPP'20 2/14/19

Allocation Control

 Grid Ordering

e grid_order is a tool by which we can manually specify
how MPI ranks will be distributed in nodes.

* There are four types of rank placements that can be
specified by the system using an environment variable
MPICH_ RANK REORDER

* Our primary tests shows ordering only controls MPI
rank distribution after nodes have already been
allocated by the system.

* We might investigate it further even though it is not
what we are looking for.

MS53 - STAMPP'20 2/14/19

Allocation Control

« Contiguous Nodes

« Slurm can provide us with contiguous set of nodes from within a
chassis which are directly connected with each other in all-to-all
fashion.

« Since FFT also requires all-to-all communication we expect it to give
better performance in this case.

« The "= —contiguous” flag of slurm does not necessarily assign
contiguous nodes within a chassis if we for instance run tests on 48
nodes.

* It assigns any contiguous nodes according to its digit order so could
be within two chassis or within a group or within two groups.

« Even though testing it on 32 ppn gave some improvement but still this
is not what we are looking for.

« We use SLURM_JOB_NODELIST environment variable to check the
nodes allocated for the jobs.

MS53 - STAMPP'20 2/14/19

Allocation Control

 Job Placement

» Using the Slurm flag “— —nodelist = nid0[1284 —
1343]” we can determine specific nodes for the jobs.

* For this a useful tool called “NID Marker” has been
designed in this work specifically for Shaheen to help
us visualize node locations and find node number
order to be used for the above Slurm flag.

MS53 - STAMPP'20 2/14/19

Desktop_Personal_LapTop/nid_marker.html

Scaling and Conclusion

 Test Case
- Examined grid size is 5123
* We run up to 60 cores using 1ppn
* A Chassis contains a max of 60 compute nodes

« We compare performance of nodes within one
Chassis verses default choice of the nodes by the
system

MS53 - STAMPP'20 2/14/19

Scaling and Conclusion

Plan1 Scaling
250 3
200 _:
150]
0 -
&
(U]
IS
<
S
g
c
E 4
g 100 4
S)
o
— Set2: default (y=-0.89)
- .. Set2: nodelist (y=-0.91)
Set3: default (y=-0.86)
Set3: nodelist (y=-0.76)
Set4: default (y=-0.91)
Set4: nodelist (y=-0.91) s
50 T T T LI N B B B B | T rrrrrrrr TT T T T T T T rrrorrry T
20 3 4o 50 60
np

MS53 - SIAMPP'20 2/14/19

Scaling and Conclusion

20483: 32ppn vs 1ppn

Total time (ms)

1o3j

103 104

MS53 - SIAMPP'20 2/14/19

Scaling and Conclusion

Bandwidth per core

J - ‘1_-‘.
- ‘:'$"" — =
" 4./‘,::15—?"'"
] s
] /
o |
foe) 2
z 13
=
e
o
=
©
& 10! 4
m]

100 5

10° 101 102 103 104 10° 108
data per core (bytes)

MS53 - SIAMPP'20 2/14/19

Communication time (ms)

MS53 - SIAMPP'20

Scaling and Conclusion

3500

3000 J

2500

2000 -

1500 —

1000 —

Plan2 Scaling

— Set1: default (y=-0.79)

- Set1: nodelist (y=-0.81)

Set2: default (y=-0.63)
Set2: nodelist (y=-0.80)
Set3: default (y=-0.80)
Set3: nodelist (y=-0.81)

1
500

1000 1500 2000
np

2/14/19

Scaling and Conclusion

| Set2: Nid-Marker |

MS53 - SIAMPP'20 2/14/19

MS53 - SIAMPP'20

Communication time (ms)

Scaling and Conclusion

3500 3

3000 3

2500

2000 -

e

(44}

o

o
|

1000 +

Plan2 Scaling

— Set1: default (y=-0.80)

Set1: nodelist (y=-0.83)
Set2: default (y=-0.80)
Set2: nodelist (y=-0.82)
Set3: default (y=-0.80)
Set3: nodelist (y=-0.82)

| L I N BN R S B B . S R B R R

500 1000
np

1500 2000

2/14/19

Scaling and Conclusion

Set, Set2, Set3: Nid-Marker

MS53 - SIAMPP'20 2/14/19

Scaling and Conclusion

* Full core utilization

* Test large grid size to detect behavior with high
core counts.

* Experiments on reserved racks

« Examining impact of dragonfly topology plugin
available at slurm

MS53 - STAMPP'20 2/14/19

Scaling and Conclusion

Full:
We ran 108073

We ran from 12 to 216 cores

Optimized:

We used 1 core per blade (4 nodes)

We used 1 chassis per group (two racks)
We used all the 18 groups

Default:

We used all core in blade (4 nodes)

We used all 6 chassis per group (two racks)
We used from 12 to 216 cores.

MS53 - SIAMPP'20 2/14/19

Scaling and Conclusion

1072 T . .
- —— a*n0% ///,;;
* pn0.92
|- —— g //
/
)4l
v
 F
g / //
& 1o-3 //
-
107
n
2/14/19

MS53 - SIAMPP'20

Scaling and Conclusion

Chassis: We ran 108073
We ran from 2 to 12 cores
12 because it has many factors thus we get many points in scaling plot.

Optimized:
We used 1 core per blade (4 nodes)

Default:
We used all core in blades (4 nodes)

MS53 - SIAMPP'20 2/14/19

Scaling and Conclusion

| — a*n1-1
4%x10°% 1
3
3 3x107% 1
J
L
b
2x107% 1
4x10° 6 x 10° 10!

MS53 - SIAMPP'20 2/14/19

Scaling and Conclusion

» To see if we align MPI communication with physical connections, then how
much do we gain.

» From previous runs, we have seen that when we use all the cores (199608)
of the system gamma was close to 0.8. From these runs we see that up to
216 nodes spread across 18 groups, we are getting very good scaling.

» Our next step will be to tweak communication pattern of Tarang to make use
of this observation.

« We can use
« 1st chassis of all groups to solve for x component of velocity.

« 2nd chassis of all groups to solve for y component of velocity.
« 3rd chassis of all groups to solve for z component of velocity.

» 4th chassis of all groups to solve for temperature

MS53 - STAMPP'20 2/14/19

Collaborators

« David Keyes, KAUST (Project Pl)

 Mahendra Verma and Anando Chatterjee, [ITK
(FFTK developers)

MS53 - STAMPP'20 2/14/19

Tank You

* Questions/Comments and Collaborations are
welcomed!

 Email: samar.aseeri@kaust.edu.sa

« Upcoming HPC venues:
« BID'20 at PPoPP’20
« HPBench’20 at HPCS’20

MS53 - STAMPP'20 2/14/19

mailto:samar.aseeri@kaust.edu.sa

