
Parallel Sparse and Conventional FFTs,
Applications and Implementation

Date: 2/14/2020
Time: 10:55 AM - 12:35 PM & 3:20 PM - 5:00 PM
Room: 505

April 23-24, 2018FFT Project

Aim of this minisymposium :

§ The fast Fourier Transform (FFT) is an algorithm used in a wide variety of
applications, yet does not make optimal use of many current and emerging
platforms such as many-core processors, GPUs, and distributed-memory systems.

§ Hardware utilization performance on its own does not, however, imply optimal
problem-solving.

§ The purpose of this minisymposium is to enable an exchange of information
between people working on FFT algorithms such as sparse and conventional FFTs,
to those working on FFT implementations, in particular for parallel hardware.

2/14/19MS53 - SIAMPP'20

 }Samar Aseeri, PhD }Benson Muite, PhD
 Computational Scientist Research Fellow of Distributed Systems
 KAUST University of Tartu

 Meetings To Date

} Birds of Feathers: SC17 and ISC18
} Presentations: SIAM PP 18 and IXPUG Middle East Conference 2018

Press

} SIAM-NEWS blog: State-of-the-Art FFT: Algorithms, Implementations, and Applications
} SIAM-NEWS blog: Next Generation FFT Algorithms in Theory and Practice: Parallel
Implementations, Sparse FFTs, and Applications

Experience
}Benchmarking numerical solution of the Klein-Gordon equation using FFTs
}Period (2014 –present)

Research (selected)

} S. Aseeri, O. Batrasev, M. Icardi, B.Leu, A. Liu, N. Li, B.K. Muite, E. Mul̈ler, B. Palen, M. Quell, H. Servat, P.
Sheth, R. Speck, M. Van More, J. Vienne, “Solving the Klein-Gordon equation using Fourier spectral methods: A
benchmark test for computer performance”, ACM DL - Proceedings of the 23rd High Performance Computing
Symposium (HPC 2015), held in Conjunction with 2015 Spring Simulation Multi-Conference, April 2015.
} Aseeri, Samar; Chatterjee, Anando; Keyes, David; Verma, Mahendra. Implementing some Strategies to
Reduce Communication Time of FFT Algorithm. (Paper -YNP)

Project Poster

}proj125:
 (PP05) The Fast Fourier Transform in the Exascale Era-ISC 2018

Upcoming Meeting

} Parallel Fast Fourier Transforms (PFFT) mini-symposium at SIAMPP 2020, Seattle - Feb 14th
} SC20...............possible workshop Submission: Deadline is soon.

Outreach

}wep page http://www.fft.report }forum
https://www.forum.fft.report }mailing list fft@lists.ut.ee

The Fast Fourier Transform in the
Exascale Era

S. Aseeri1, B.K. Muite2, D. Takahashi3

Abstract
The Fast Fourier Transform (FFT) is an important component of many pro-
grams. On many emerging high performance computing architectures, the
FFT may not work well on the full parallel computer. A good benchmark
will lead to adoption of the best FFT software technology. Identification
of alternative algorithms to the FFT along with comparisons of efficiency
will lead to optimal use of high performance computers. A galvanized and
involved benchmarking community is required to do this.

The Fast Fourier Transform
An accurate and low computational cost
algorithm used for solving problems re-
lated to

• Wave propagation (such as seismic
inversion)

• Diffusion (such as hydrocarbon reser-
voirs)

• Solid and fluid mechanics

• Electromagnetism

• Signal processing

Figure 1: Demonstration of how the
Fourier transform represents a signal in
frequency space

Project Aim
• One cannot improve what one cannot measure

• Measure and report FFT performance to encourage improvements in efficiency and
architectural adaptability

• Obtain consensus to enable widespead adoption of a long lived HPC benchmark suite, a
component of which will enable performance prediction for FFT on high performance
computers

• Create a benchmarking website resource that will serve as a guide for researchers and
users of FFT libraries

Current Hardware Trends

2004 2008 2012 2016

100

101

102

103

Year

General microprocessor
Top HPL - CPU

Top HPL - accelerator
Top FFT system

(a) Cores on a chip

2004 2008 2012 2016

1

2

3

4

5

Year

G
H

z

General microprocessor
Top HPL - CPU

Top HPL - accelerator
Top FFT system

(b) Processor clock speeds

2004 2008 2012 2016
0

2

4

6

8

10

Year

µ
s

Top HPL system
Top FFT system

(c) Network zero byte latency

Figure 2: (a) and (b) compare general microprocessors (data from [3,4]) to the CPU
and accelerator on the top system on the top 500 list and the top global FFT from HPC
challenge. (c) shows latency of the top system on the top 500 list and the top global FFT
from HPC challenge

• Fewer cores and lower clock speeds on the top systems than on the typical processor

• No improvement in network latency and low bisection bandwidth

• Heterogeneous hardware with accelerators such as GPUs (high bandwidth, even higher
flop rate), NEC SX-Aurora TSUBASA (high bandwidth, balanced flop rate)

•→ Need a flexible benchmark specification

Some Fast Fourier Transform Benchmarks
• FFTW data comparison (http://www.fftw.org/benchfft/)

– Comparison of serial and multicore transforms.

– Data presented as graphs on website

– Not regularly updated

• GearSHIFFT data comparison (https://www.kcod.de/gearshifft/)

– Recent benchmark

– FFT benchmarking software that does multiple tests to estimate statistical variation

– Currently focused on CPU (serial and multicore) and GPU

– No distributed memory data

– Nice web interface to explore data

– Few submissions so far

• HPC challenge (http://icl.cs.utk.edu/hpcc)

– Global one dimensional distributed memory FFT

– Reference implementation uses FFTE

– Data available from 2004, lower submission rate since 2012

• NAS Parallel Benchmarks (https://www.nas.nasa.gov/publications/npb.html)

– Global three dimensional distributed memory FFT

– Reference implementation uses Swartzrauber FFT

– Little data available for download

Parallel Fast Fourier Transform Performance
• High performance computing challenge and high performance linpack

2004 2008 2012 2016
10−2

10−1

100

101

102

103

104

105

Year

T
fl

o
p

/s

Peak HPL Peak FFT

Figure 3: Evolution of best global 1D
FFT performance from HPC challenge
and best HPL performance from the
Top 500 list

2004 2008 2012 2016

0

0.2

0.4

0.6

0.8

1

1.2

·10−2

Year

Figure 4: Evolution of ratio of best
global 1D FFT performance from HPC
challenge to best HPL performance
from the Top 500 list

– Ratio of relative performance of FFT to HPL is low

– Global 1D FFT on K computer from 2011 still best of all HPC challenge submissions

• Benchmarking numerical solution of the Klein-Gordon equation

101 102 103 104 105 106

100

101

102

103

Total on chip bandwidth from RAM (Gb/s)

T
im

e
to

so
lu

ti
o
n

(s
)

Aquila
Beacon
Hector
Hornet

Juqueen
K

K +
K *

Marenostrum 3
Monte Rosa

Neser
Shaheen

Stampede
Titan
Vedur

Vedur *
VSC 2

Figure 5: Time for solution of Klein Gordon equation using FFT on a 5123 discretiza-
tion [1]. Entries with a * used FFTE, all other entries used 2DECOMP&FFT. Entry
with a + used 1 core per node.

– Compare performance by best time to solution

– Examine strong scaling → A larger computer on its own is not always helpful

Alternative Algorithms
• Signal processing and linear solvers: Sparse FFT, Non-uniform FFT

• Linear solvers: Fast Multipole Method, Multigrid, Fast Gauss Transform

Meetings To Date
• Birds of Feathers: SC 17 and ISC 18

• Presentations: SIAM PP 18 and IXPUG Middle East Conference 2018

Roadmap
By mid 2019, develop community and reach consensus on a benchmark or set of bench-
marks to determine when to use the FFT and alternatives to the FFT on communication
constrained parallel computer. After reaching consensus, foster community collectection
and discussion of data.

• In person meetings at conferences related to high performance computing and domain
specific areas that utilize parallel FFTs

• Collaboration with other benchmark writers to find a widely accepted and adopted
benchmark suite for supercomputer co-design

• Online discussion and dissemination through web page (http://www.fft.report/), forum
(https://www.forum.fft.report/) and mailing list (fft@lists.ut.ee)

References
1. Aseeri et al. “Solving the Klein-Gordon equation using Fourier spectral methods: A

benchmark test for computer performance” April 2015

2. Bailey et al. “The NAS parallel benchmarks” March 1994

3. Frigo and Johnson “The design and implementation of FFTW” February 2005

4. Horowitz et al. “35 Years of microprocessor trend data” 2010

5. Luszczek et al. “Introduction to the HPC Challenge Benchmark Suite” March 2005

6. Rupp “42 Years of microprocessor trend data” February 2018

7. Steinbach and Werner “gearshifft – The FFT Benchmark Suite for Heterogeneous Plat-
forms” May 2017

King Abdullah University University University
of Science and Technology1 of Tartu2 of Tsukuba3

Implementing some Strategies
to Reduce Communication
Time of FFT Algorithm

Presenter:

Samar A. Aseeri, PhD
Computational Scientist, ECRC
King Abdullah University of Science & Technology (KAUST), SA

2/14/19MS53 - SIAMPP'20

2/14/19MS53 - SIAMPP'20

• In 1807 Jean Fourier invented a technique to
solve the heat diffusion equation in a conducting
plate with arbitrary forcing. This technique was
the Fourier Transform.

𝑥 → 𝑘 ∶ 𝑓 𝑥 =
1
2𝜋 *

+,

,

𝑒./0𝐹 𝑘 𝑑𝑘

𝑘 → 𝑥 ∶ 𝐹 𝑘 = *
+,

,

𝑒+./0𝑓 𝑥 𝑑𝑥

Definition of Fourier Transform

2/14/19MS53 - SIAMPP'20

• Cooley and Tukey published a paper on the Fast
Fourier Transform an O(n log n) method for the
calculation of the Discrete Fourier Transform
which is an approximation of the Fourier
Transform which originally is derived from the
Fourier Series.

• The FFT algorithm was developed by Gauss
1805 but this was not recognized until recent
time.

• Time complexity of FFT according to DFT
reduces from 𝑂 𝑛5 𝑡𝑜 𝑂(𝑛 𝑙𝑜𝑔𝑛).

Cooley and Tukey, 1965

2/14/19MS53 - SIAMPP'20

• It is an important tool for image and signal
processing, radio astronomy, wave propagation
(such as seismic inversion), diffusion (such as
hydrocarbon reservoirs), solid and fluid
mechanics and electromagnetism.

• It is an accurate and low computational cost
algorithm

• It solves multiscale problems
• Derivatives are simply calculated <𝑓(=) = (𝑖𝑘)= ?𝑓

Why is it Important?

2/14/19MS53 - SIAMPP'20

• Efforts to optimize the performance of 3D parallel FFT
libraries have tended to focus on slab and pencil
decompositions.

• Slab decompositions tend to perform well on small process
counts.

• pencil decompositions scale better on large core counts.
• Applications that rely on FFTs adopt different data

decomposition strategies:
• 1D decompositions give each process a complete 2D slab
• 2D decomposition give each process a complete 1D pencil
• 3D decompositions give each process a block that does not span

the global domain in any dimension
• The main performance bottleneck of parallel 3D FFTs is

the communication. Once 3D data is distributed over MPI
processes, all-to-all communications are unavoidable.

Limitations

2/14/19MS53 - SIAMPP'20

• FFTW
• FFTE
• FFTK
• 2decomp&fft
• P3DFFT
• PFFT
• OpenFFT
• AccFFT
• GPU FFT and Xion phi FFT
• Hybrid FFT

Parallel Libraries

2/14/19MS53 - SIAMPP'20

• Introduction
• FFTK Library
• Shaheen Topology
• Allocation Control
• Scaling and Conclusion

Work in Progress

2/14/19MS53 - SIAMPP'20

• Aim is to speed up FFTs on Cray XC40 machine
by using the full bandwidth offered by the cluster

• For testing we used the FFTK parallel library
developed by collaborators of this work

• Several job placements and reordering cases
were examined and some findings will be
highlighted here

Introduction

2/14/19MS53 - SIAMPP'20

• Chatterjee, Verma, and group members of
Kanpur

• Scaled up to 196608 cores of Shaheen II of
KAUST for 3072C

• Tested up 6144C grid
• Fluid solver TARANG uses it
• 2D pencil decomposition is typically used for

large core counts

FFTK Library

2/14/19MS53 - SIAMPP'20

• The forward transform is given by
?𝑓 = D

/E/F,/H

𝑓(𝑥, 𝑦, 𝑧)𝑒+./E0 𝑒+./FK𝑒+./HL

• Algorithm
• FFT along Z axis
• Communicate Z pencils to Y pencils.
• FFT along Y axis
• Communicate Y pencils to X pencils.
• FFT along X axis

FFTK Library

2/14/19MS53 - SIAMPP'20

• Works also for 2D data by setting 𝑁K = 1
• Slab FFT can be performed by setting 𝑝OPQ = 1
• Available basis: FFF, SFF, SSF, SSS and ChFF

FFTK Library

2/14/19MS53 - SIAMPP'20

• Cray XC40
• 38 fastest supercomputer in the world
• It consists of about 200000 CPU cores
• It manages a speed of about 7 Petaflops/s

theoretical peak and 5.5 Petaflops/s of Linpack
performance

• It uses Dragonfly Topology

Shaheen Topology

3
Chassis

16
blades

36
Cabinets

Group Group Group Group

each
blade
has 4
nodes

Each group consists of 21 + 20 server
nodes

Each group consists of 171 + 172 compute nodes

each
node

consists
of 2

sockets
each with
16 coresTotal compute nodes = 6,174

Total cores = 197,568

Shaheen Topology

2/14/19MS53 - SIAMPP'20

Shaheen Topology

2/14/19MS53 - SIAMPP'20

2/14/19MS53 - SIAMPP'20

• Optimize Communication
• Grid ordering
• Contiguous Nodes
• Job Placement

Allocation Control

2/14/19MS53 - SIAMPP'20

• Grid Ordering
• grid_order is a tool by which we can manually specify

how MPI ranks will be distributed in nodes.
• There are four types of rank placements that can be

specified by the system using an environment variable
MPICH_RANK_REORDER

• Our primary tests shows ordering only controls MPI
rank distribution after nodes have already been
allocated by the system.

• We might investigate it further even though it is not
what we are looking for.

Allocation Control

2/14/19MS53 - SIAMPP'20

• Contiguous Nodes
• Slurm can provide us with contiguous set of nodes from within a

chassis which are directly connected with each other in all-to-all
fashion.

• Since FFT also requires all-to-all communication we expect it to give
better performance in this case.

• The “− −𝑐𝑜𝑛𝑡𝑖𝑔𝑢𝑜𝑢𝑠” flag of slurm does not necessarily assign
contiguous nodes within a chassis if we for instance run tests on 48
nodes.

• It assigns any contiguous nodes according to its digit order so could
be within two chassis or within a group or within two groups.

• Even though testing it on 32 ppn gave some improvement but still this
is not what we are looking for.

• We use SLURM_JOB_NODELIST environment variable to check the
nodes allocated for the jobs.

Allocation Control

2/14/19MS53 - SIAMPP'20

• Job Placement
• Using the Slurm flag “−−𝑛𝑜𝑑𝑒𝑙𝑖𝑠𝑡 = 𝑛𝑖𝑑0[1284 −
1343]” we can determine specific nodes for the jobs.

• For this a useful tool called “NID Marker” has been
designed in this work specifically for Shaheen to help
us visualize node locations and find node number
order to be used for the above Slurm flag.

Allocation Control

Desktop_Personal_LapTop/nid_marker.html

2/14/19MS53 - SIAMPP'20

• Test Case
• Examined grid size is 512C
• We run up to 60 cores using 1ppn
• A Chassis contains a max of 60 compute nodes
• We compare performance of nodes within one

Chassis verses default choice of the nodes by the
system

Scaling and Conclusion

Scaling and Conclusion

2/14/19MS53 - SIAMPP'20

Set2: default (=-0.89)
Set2: nodelist (=-0.91)
Set3: default (=-0.86)
Set3: nodelist (=-0.76)
Set4: default (=-0.91)
Set4: nodelist (=-0.91)

20 30 40 50 60

np

50

100

150

200

250

Co
m

m
un

ica
tio

n
tim

e
(m

s)

Plan1 Scaling

Scaling and Conclusion

2/14/19MS53 - SIAMPP'20

Scaling and Conclusion

2/14/19MS53 - SIAMPP'20

Scaling and Conclusion

2/14/19MS53 - SIAMPP'20

Scaling and Conclusion

Set2: Nid-Marker

2/14/19MS53 - SIAMPP'20

Scaling and Conclusion

2/14/19MS53 - SIAMPP'20

Scaling and Conclusion

2/14/19MS53 - SIAMPP'20

Set, Set2, Set3: Nid-Marker

2/14/19MS53 - SIAMPP'20

• Full core utilization
• Test large grid size to detect behavior with high

core counts.
• Experiments on reserved racks
• Examining impact of dragonfly topology plugin

available at slurm

Scaling and Conclusion

Scaling and Conclusion

Full:
We ran 1080^3

We ran from 12 to 216 cores

Optimized:
We used 1 core per blade (4 nodes)
We used 1 chassis per group (two racks)
We used all the 18 groups

Default:
We used all core in blade (4 nodes)
We used all 6 chassis per group (two racks)
We used from 12 to 216 cores.

2/14/19MS53 - SIAMPP'20

Scaling and Conclusion

2/14/19MS53 - SIAMPP'20

Scaling and Conclusion

Chassis: We ran 1080^3

We ran from 2 to 12 cores

12 because it has many factors thus we get many points in scaling plot.

Optimized:
We used 1 core per blade (4 nodes)

Default:
We used all core in blades (4 nodes)

2/14/19MS53 - SIAMPP'20

Scaling and Conclusion

2/14/19MS53 - SIAMPP'20

2/14/19MS53 - SIAMPP'20

• To see if we align MPI communication with physical connections, then how
much do we gain.

• From previous runs, we have seen that when we use all the cores (199608)
of the system gamma was close to 0.8. From these runs we see that up to
216 nodes spread across 18 groups, we are getting very good scaling.

• Our next step will be to tweak communication pattern of Tarang to make use
of this observation.

• We can use
• 1st chassis of all groups to solve for x component of velocity.

• 2nd chassis of all groups to solve for y component of velocity.

• 3rd chassis of all groups to solve for z component of velocity.

• 4th chassis of all groups to solve for temperature

Scaling and Conclusion

2/14/19MS53 - SIAMPP'20

• David Keyes, KAUST (Project PI)
• Mahendra Verma and Anando Chatterjee, IITK

(FFTK developers)

Collaborators

2/14/19MS53 - SIAMPP'20

• Questions/Comments and Collaborations are
welcomed!

• Email: samar.aseeri@kaust.edu.sa
• Upcoming HPC venues:

• BID’20 at PPoPP’20
• HPBench’20 at HPCS’20

Tank You

mailto:samar.aseeri@kaust.edu.sa

