
FFTs for (mostly) Particle Codes
within the DOE Exascale Computing Program

Steve Plimpton
Sandia National Laboratories

SC17 FFT BOF - November 2017 - Denver, CO



CoPA = ECP Co-design Center for Particle Apps

Particle app customers for FFTs within ECP

MD: LAMMPS (S Plimpton, SNL)
Nbody: HACC (S Habib, ANL)
PIC: XGC for tokamaks (CS Chang, PPPL)
PIC: WarpX for accelerators (J-L Vay, LBNL)
MPM: ExaAM for additive manufacturing (J Turner, ORNL)

Other customers within ECP

NWChemEx: quantum DFT (T Dunning, PNNL)
AMReX: co-design grid library (J Bell, LBNL)

All codes want performance, scalability, portability
portability important for ECP cornucopia of hardware
FFTs only 5-20% of app run-time



CoPA = ECP Co-design Center for Particle Apps

Particle app customers for FFTs within ECP

MD: LAMMPS (S Plimpton, SNL)
Nbody: HACC (S Habib, ANL)
PIC: XGC for tokamaks (CS Chang, PPPL)
PIC: WarpX for accelerators (J-L Vay, LBNL)
MPM: ExaAM for additive manufacturing (J Turner, ORNL)

Other customers within ECP

NWChemEx: quantum DFT (T Dunning, PNNL)
AMReX: co-design grid library (J Bell, LBNL)

All codes want performance, scalability, portability
portability important for ECP cornucopia of hardware
FFTs only 5-20% of app run-time



Two FFT libs already available from CoPA apps

SWFFT = HACC FFT

https://xgitlab.cels.anl.gov/hacc/SWFFT
Adrian Pope (ANL), D Daniel (LANL), N Frontiere (ANL)

Parallel FFTs = LAMMPS FFT

http://www.sandia.gov/∼sjplimp/download.html
Steve Plimpton (Sandia)
need a better lib name!



HACC vs LAMMPS FFTs

Similarities:

Both old, 10-20 years

Written to address needs of parent app

not much else available at the time
HACC: big FFTs on lots of procs, bricks & pencils
LAMMPS: arbitrary initial decompositions

Written in C + MPI, callable from C/C++/Fortran

Only the data movement
use FFTW or MKL for 1d FFTs

Just 3d complex-to-complex

Poisson solves ⇒ convolution layout

true of many ECP apps & particle apps generally



HACC vs LAMMPS FFTs

Interesting differences:

MD: 10243 FFT is huge (∼1B atoms)

Nbody: 10243 FFT is small, HACC uses 10K 3 FFTs = 1T

MPI usage: 1 MPI/node to all-MPI/node, depends on app

double vs single precision

brick ⇐⇒ pencil comm versus pencil ⇐⇒ pencil comm



Arbitrary initial & final grid decompositions

Load-balanced tiling of 3d domain via RCB

Start/end FFTs with arbitrary grid decomposition



Brick-to-pencil and pencil-to-pencil comm primitives



Communication trade-offs

HACC: brick ⇐⇒ pencil
6 comm stages: brick ⇒ x ⇒ brick, ditto for y & z
Per-stage: each proc sends/recvs with P1/3 procs

LAMMPS: pencil ⇐⇒ pencil
4 comm stages: brick ⇒ x ⇒ y ⇒ z ⇒ brick
Per-stage: each proc sends/recvs with P2/3 procs

Key point:

P1/3 vs P2/3 can be significant
P=1M: P1/3 = 100 messages, P2/3 = 10000 messages

Same comm volume per stage
HACC: fewer/larger messages (better), 6 stages
LAMMPS: more/smaller messages, 4 stages (better)
Trade-off in # of stages vs # of messages (latency)
Which is faster might depend on N, P, machine



Communication trade-offs

HACC: brick ⇐⇒ pencil
6 comm stages: brick ⇒ x ⇒ brick, ditto for y & z
Per-stage: each proc sends/recvs with P1/3 procs

LAMMPS: pencil ⇐⇒ pencil
4 comm stages: brick ⇒ x ⇒ y ⇒ z ⇒ brick
Per-stage: each proc sends/recvs with P2/3 procs

Key point:

P1/3 vs P2/3 can be significant
P=1M: P1/3 = 100 messages, P2/3 = 10000 messages

Same comm volume per stage
HACC: fewer/larger messages (better), 6 stages
LAMMPS: more/smaller messages, 4 stages (better)
Trade-off in # of stages vs # of messages (latency)
Which is faster might depend on N, P, machine



Communication trade-offs

HACC: brick ⇐⇒ pencil
6 comm stages: brick ⇒ x ⇒ brick, ditto for y & z
Per-stage: each proc sends/recvs with P1/3 procs

LAMMPS: pencil ⇐⇒ pencil
4 comm stages: brick ⇒ x ⇒ y ⇒ z ⇒ brick
Per-stage: each proc sends/recvs with P2/3 procs

Key point:

P1/3 vs P2/3 can be significant
P=1M: P1/3 = 100 messages, P2/3 = 10000 messages

Same comm volume per stage
HACC: fewer/larger messages (better), 6 stages
LAMMPS: more/smaller messages, 4 stages (better)
Trade-off in # of stages vs # of messages (latency)
Which is faster might depend on N, P, machine



Point-to-point versus all-to-all comm

Data transpose for 3d FFT is not really all-to-all

Only all-to-all within groups of P1/3 or P2/3 procs

1st option: point-to-point MPI calls within each group

2nd option: use MPI all2all() within sub-communicators
learned this idea from Paul Coffman (IBM, now ALCF)
significantly faster than full MPI all2all(MPI COMM WORLD)

Surprisingly 2nd option often faster than 1st option

at least in LAMMPS
don’t think it was 20 years ago, but is now
especially for vendor-optimized MPIs



Point-to-point versus all-to-all comm

Data transpose for 3d FFT is not really all-to-all

Only all-to-all within groups of P1/3 or P2/3 procs

1st option: point-to-point MPI calls within each group

2nd option: use MPI all2all() within sub-communicators
learned this idea from Paul Coffman (IBM, now ALCF)
significantly faster than full MPI all2all(MPI COMM WORLD)

Surprisingly 2nd option often faster than 1st option

at least in LAMMPS
don’t think it was 20 years ago, but is now
especially for vendor-optimized MPIs



Point-to-point versus all-to-all comm

Data transpose for 3d FFT is not really all-to-all

Only all-to-all within groups of P1/3 or P2/3 procs

1st option: point-to-point MPI calls within each group

2nd option: use MPI all2all() within sub-communicators
learned this idea from Paul Coffman (IBM, now ALCF)
significantly faster than full MPI all2all(MPI COMM WORLD)

Surprisingly 2nd option often faster than 1st option

at least in LAMMPS
don’t think it was 20 years ago, but is now
especially for vendor-optimized MPIs



What I’d like to see ...

A single web site with timing results for all packages:

One-stop shopping for customer apps

Just 3d complex-to-complex would be fine, double/single

Various FFT sizes, various machines

Various choices of MPI tasks/node

Each package could advertise its list of features


