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About :

� MIT’s sparse FFT 2012

� Computing FFT in a sub-linear time to efficiently locate the 
most significant output (very few “large” coefficients present in 
the frequency domain)

� Profiled & Parallelized sFFT
� Multicore using OpenMP (~4.5x on 6 threads)
� ARM + DSP using OpenMP
� GPUs using CUDA (~25𝑥 vs the MIT sFFT, ~10x faster than cuFFT for 

large data size)
� GPUs using OpenACC (performance close to CUDA)

� Dynamic irregular memory access patterns makes 
parallelization most challenging

� A runtime transformation algorithm to exploit temporal and 
spatial locality
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Irregular memory access pattern
Irregular Memory Access Pattern in Sparse FFT

n coordinates

B buckets

Irregular data 
reference pattern

    buckets[i % B] += signal[idx] * filter[i]
  

• Randomly permutes the signal
spectrum and bins into a small
number of buckets

• Irregular memory access pattern
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sFFT stages 

How does sFFT work?
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Profiling Results
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Stages 3-5
Perm+filter

Perm+filter (Step 1-2) is the “hotpot” of the algorithm
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Profiling sparse FFT

5

Computational hotspot in the 
algorithm – Permutation + 
Filter, dominant 
K is fixed to 1000

Computational hotspot in the 
algorithm – Estimation is 
dominant
N is fixed to 2^25 



Using OpenMP to parallelize sFFT on Multicore

K= 1000 

Wang, Cheng, et al. "Parallel sparse FFT." Proceedings of the 3rd 
Workshop on Irregular Applications: Architectures and Algorithms. 
ACM, 2013

• PsFFT (6 threads) is ~4 − 5x
faster than the original MIT 
sFFT

• From,  n = 	2++ onwards, 
PsFFT reduces execution 
time compared to FFTW 

• PsFFT is faster than FFTW 
up to 9.23x

ICC 13.1.1 FFTW 
3.3.3
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Using CUDA to paralellize cusFFT on GPUs

Wang, Cheng, Sunita Chandrasekaran, and Barbara Chapman. "cusFFT: A 
High-Performance Sparse Fast Fourier Transform Algorithm on 
GPUs." Parallel and Distributed Processing Symposium, 2016 IEEE 
International. IEEE, 2016.

• cusFFT is ~4𝑥 faster 
than PsFFT on CPU, 
~25𝑥 vs the MIT sFFT

• cusFFT is ~10𝑥 faster 
than cuFFT for large 
data size

K= 1000 

CUDA 5.5
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Using OpenACC – Parallel sFFT, cusFFT, sFFT & 
FFTW

K= 1000 constant and N varied and vice versa 

8
Presented at GTC 2017 

Figure 5.5: OpenACC-sFFT vs cusFFT vs sFFT vs PsFFT vs FFTW (threads), for
a constant K=1000 and N is varied

other architectures which is available with OpenACC.

Figure 5.5 shows the comparison of results between, serial sFFT v2.0 by MIT,

CUDA Sparse FFT(cusFFT), Parallel Sparse FFT (PsFFT), FFTW with threads en-

abled (6 threads) and OpenACC-sFFT. FFTW library performs really well when the

sparsity is lower, but as sparsity increases it can be seen to have an exponential growth

to the time taken to perform FFT. Sparse FFT serial version performs worse as com-

pared to FFTW in the beginning, and then starts picking up, eventually beating FFTW

for really sparse input data. Parallel Sparse FFT performs almost 4-5x faster than

sFFT. The best among all these, with the least amount of time taken, is by cusFFT,

and following closely is OpenACC-sFFT.
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Computation and Data ReorderingApproach: Computation/Data Reordering
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A runtime transformation algorithm to exploit temporal and spatial 
locality

Wang, Cheng, Sunita Chandrasekaran, and Barbara Chapman. " An Efficient 
Data Layout Transformation Algorithm for Locality-Aware Parallel Sparse 
FFT." IA3, Workshop at SC17 <to be published>



CPACK algorithmRethink the Consecutive Packing (CPACK) Algorithm

CPACK: A greedy algorithm which packs data into
consecutive locations in the order they are first accessed by
the computation

23 67 103

1 2 3 4

Computation

Data

9 ... ... ...

CPACK

9 23 67 103

Data

6 cache miss

5 6 7 1 2 3 4

Computation

5 6 7

Data access order: 9, 23, 103, 23, 67, 23, 67
7 cache misses

Original Data reordered by CPACK
miss

hit

• First-touch policy packs (9,23) together
• Not optimal
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Rethinking CPACK algorithm
Rethink the Consecutive Packing (CPACK) Algorithm

A�nity-conscious data reordering ...

23 67 103
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Computation

Data

9 ... ... ...

data 
reordering

23 679 103

Data

4 cache miss

5 6 7 1 2 3 4

Computation

5 6 7

Data access order: 9, 23, 103, 23, 67, 23, 67
7 cache misses

Original An Optimal data layout
miss

hit

• CPACK does not consider data a�nity (i.e., how close the nearby
data elements are accessed together)

• Packs (23,67) rather than (9,23) should yield better locality

May 17, 2016 Cheng Wang (cwang35@uh.edu) 18 / 22



CPACKE Algorithm

A Padding Algorithm that Circumvents the Complexity

CPACKE Algorithm: Extends the CPACK by creating duplicated
copies of each repeatedly accessed data entry
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miss

hit

23 23 67

• Advantage: Better locality than CPACK

• Disadvantage: Slight space overhead
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Performance Evaluation

Performance Evaluation
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• Applies the CPACKE to the perm+filter stage in sFFT
• Improves the performance by 30% for the irregular kernel
• Improves the overall performance of PsFFT by 20%
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Questions?

1) Why did you write your own FFT? 

2) What considerations are important for you in an FFT implementation? 

3) What might you look for if there were to be a unified FFT interface (similar 
to BLAS, LAPACK and SCALAPACK interfaces)? 

4) How important are performance, portability, and scalability for you? 

5) Will FFT be needed in exascale computing and if so how will it be achieved? 

6) What would be a good FFT benchmark or a good way to include the FFT in 
a high-performance computer benchmark? 
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