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Nonlinear dispersive PDEs

✦ nonlinearity against dispersion, stable 
structures (solitons)

✦ rapid oscillations (dispersive shocks)
✦ blow-up (loss of regularity in finite time), limit 

of applicability of the model
✦ most complete results for integrable equations, 

results generic?



Hopf equation
• hyperbolic conservation law for u(x, t),

initial data u0(x)
ut + 6uux = 0, u(x, 0) = u0(x)

• solution with the method of characteristics
u(x, t) = u0(�), x = 6tu0(�) + �

• critical time tc =
1

min�⇥R [�6u�
0(�)]

,

gradient catastrophe,
t > tc: solution multivalued (shock)



 Example: u0 = �sech2x



Dissipative regularization 
 ut + 6uux = �uxx

� = 0.1



Korteweg-de Vries equation 
ut + 6uux + �2uxxx = 0

� = 0.01

u0 = �sech2x



Zoom in: dispersive shock



Different values of ε
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Blow-up

• generalized KdV equation

ut + upux + ✏2uxxx = 0, p 2 N

•
ut + ✏2uxxx = 0

(linear) and
ut + upux = 0

(shocks) do not have blow-up of the L1 norm of u

• for p < 4: global existence in time,
for p = 4: finite time blow-up (Martel, Merle, Raphaël: rescaled soliton),
for p > 4: finite time blow-up, no theory yet.



gKdV, small dispersion
u0 = sech2x, ✏ = 0.1 n = 4



gKdV, small dispersion
u0 = sech2x, ✏ = 0.01 n = 4





✦ first success of spectral methods: Orszag 1971, 
Orr-Sommerfeld instability

✦ periodic problems: discrete Fourier series via 
fast Fourier transform (fft)

✦ exponential decrease of the Fourier 
coefficients for analytic functions: exponential 
decrease of the numerical error due to 
truncation of the series: spectral convergence

✦ non-periodic problems: polynomial 
interpolation

Spectral methods



Polynomial interpolation
• Chebychev collocation points (Runge phenomenon)

lj = cos
✓

j⇡

N

◆
, j = 0, . . . , N, N 2 N

• Lagrange polynomial p(l) of order N for f : [�1, 1] 7! R,
p(lj) = f(lj), j = 0, . . . , N

• approximation of the derivative:
f 0(lj) ⇡ p0(lj) =

PN
i=0 Djif(li), j = 0, . . . , N ; D: di↵erentiation matrix

• spectral convergence for smooth f(l)

• Clenshaw-Curtis algorithm:

Z 1

�1
f(l)dl ⇡

Z 1

�1
p(l)dl =

NX

n=0

wnf(ln)



Collocation method
• Chebychev polynomials

Tn(l) = cos(narccos(l)), n = 0, 1, . . .

• collocation method: f(l) ⇡
PN

n=0 anTn(l), on collocation points:

f(lj) =
NX

n=0

anTn(lj), j = 0, . . . , N

relation to ↵t (fast cosine transformation, not precompiled in Matlab)

• spectral coe�cients an, decrease exponentially with n for smooth f(l)

• recurrence formula for Chebyshev polynomials, division by l in coe�cient
space

Tn+1(l) + Tn�1(l) = 2lTn(x), n = 1, 2, . . .



Multidomain method
• spectral method of ‘infinite order’, but cond(D2

) = 0(N4
); multi-domains

to keep N small

• interval [xl, xr] mapped to [�1, 1]:

x = xl
1 + l

2
+ xr

1� l

2
, l 2 [�1, 1]

• compactified exterior domains (CED): s = 1/x local coordinate,

uxx = s4uss + 2s3us

singular for s = 0 (compactification with spectral methods first used by

Grosch, Orszag 1977, popular in astrophysics)



Schrödinger equations
• one dimensional Schrödinger equation

i@tu + @xxu + V (|u|2, x)u = 0

• linear case: quantum mechanics, quantum semiconductors, in electromag-

netic wave propagation, in seismic migration, lowest order one-way ap-

proximation (paraxial wave equation) to the Helmholtz equation, Fresnel

equation in optics, underwater acoustics

• V = ±2|u|2: focusing (+) or defocusing (�) cubic nonlinear Schrödinger

equation (NLS), completely integrable (Zakharov-Shabat)

• NLS: modulation of waves in hydrodynamics, nonlinear optics and plasma

physics, Bose-Einstein condensates

M. Birem and C. Klein, Multidomain spectral method for Schrödinger equations,

Adv. Comp. Math., 42(2), 395-423 DOI 10.1007/s10444-015-9429-9 (2016)
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Choice of numerical approach

• (piecewise) smooth functions: use spectral methods

• rapidly decreasing or periodic functions: Fourier (additional advantage:
diagonal di↵erentiations matrices, well conditioned)

• solutions with algebraic decrease, compact support or a finite number of
discontinuities: polynomial interpolation

• Galilei invariance: u(t, x) NLS solution, so is

û(x, t) = u(x� ct, t)eicx/2�ic2t/4,

c 2 R finite speed



Rogue waves
✦ Giant waves on deep water, more than twice the 

average wave height
✦ NLS solutions?



Peregrine solution
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• exact solution
uPer =

✓
1� 4(1 + 4it)

1 + 4x2 + 16t2

◆
e2it

• |u| asymptotically decaying to 1 (both in x and t), maximum three times
the asymptotic value



Fourth oder method
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„Benjamin-Feir instability“
• linearization: u = uPer(1 + ṽ)

iṽt + ṽxx + 2(lnuPer)xṽx + 4|uPer|2<ṽ = 0,

numerically problematic for uPer ⇡ 0

• uPer ! e2it for x!1 or t!1, ṽ = ↵ + i�

↵t + �xx = 0, ��t + ↵xx + 4↵ = 0

• Fourier transform in x, eigenvalues

�1,2(k) = ±|k|
p

4� k2

modulational instability



NLS, localized perturbation
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• Gaussian perturbation

u(x, 0) = uPer(x, 0) + 0.1 exp(�x2)



Localized perturbation
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• conserved quantity

E =
1
2

Z

R

�
|ux|2 � |u|2(|u2|� 1)

 
dx

relative conservation better than 10�3

t=1
Chebychev
coefficients 

compactified zone



Transverse stability 

• 2d NLS
i@tu+ @xxu+ @yyu+ 2|u|2u = 0

• hypothesis: periodic in y (this includes data rapidly decreasing in y)

• Fast Fourier transform (FFT) techniques in y (diagonal di↵erentiation
matrices), x 2 R as before (2 domains, one compactified)

• inexact 4th order splitting technique (linear step integrated with IRK4)
fully explicit,

L+L�(K1 +K2) = 2i�U(tn),

where L± = 1̂� h(0.25i± 0.25/
p
3)�

C. Klein, N. Stoilov, Numerical study of the transverse stability of the Peregrine
solution, Stud Appl Math. 145 (2020) 36–51. https://doi.org/10.1111/sapm.12306
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• perturbation localised in x and y, t  0.5

u(x, y, 0) = uPer + 0.1 exp(�(x+ 1)2 � y2)
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F I G U R E 4 Real part of the solution to the 2D NLS equation for the initial data 𝑢(𝑥, 𝑦, 0) = 𝑢𝑃𝑒𝑟(𝑥, 𝑡0) +
0.1 exp(−(𝑥 + 1)2 − 𝑦2) for 𝑡 = 0.5, on the left for 𝑦 = 0, on the right for 𝑦 = 1.6199; the Peregrine solution for the
same time is shown as a dotted line
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F I G U R E 5 Solution to the 2D NLS equation for the initial data 𝑢(𝑥, 𝑦, 0) = 𝑢𝑃𝑒𝑟(𝑥, 𝑡0) − 0.1 exp(−(𝑥 + 1)2 − 𝑦2)
for 𝑡 = 0.5 on the left, and the real part of the solution at the same time for 𝑦 = 0 on the right together with the
Peregrine solution (dotted)

for 𝑦 = 3[−𝜋,𝜋], and 𝑁𝑡 = 1, 000 time steps. Note that larger values of these parameters have only
an effect on the solution below plotting accuracy, i.e., the resulting figures would be indistinguishable
from the ones shown.

We first consider the case 𝑥0 = −1 and 𝑐 = 0.1 in Figure 3, on the left the initial condition, on the
right the solution for 𝑡 = 0.5. The solution is clearly unstable in the sense that the initial perturba-
tions grow.

To show that the solution does not stay close to the Peregrine solution, we show in Figure 4 the
solutions for 𝑡 = 0.5 and for 𝑦 = 0 (minimal modulus of 𝑢 for 𝑥 = 0 and 𝑡 = 0.5) and 𝑦 = 1.6199 (one
of the maxima of |𝑢| for 𝑥 = 0 and 𝑡 = 0.5) together with the Peregrine solution.

The situation is similar in the case 𝑥0 = −1 and 𝑐 = −0.1 as can be seen in Figure 5: on the left,
the modulus of the solution for 𝑡 = 0.5 is shown, on the right, the solution for 𝑦 = 0 together with the
Peregrine solution (dotted). Again the perturbed solution does not stay close to the Peregrine solution.

The solution for the initial data (15) for 𝑥0 = 0 and 𝑐 = 0.1 (on the left of Figure 6) at time 𝑡 = 0.5
can be seen on the right of Figure 6. The initial perturbations appear once more to grow in time.

In Figure 7, we show the solution on the right of Figure 6 for 𝑦 = 0 and for 𝑦 = 1.7671, one of the
maxima of the modulus of 𝑢 for 𝑥 = 0 together with the Peregrine solution.



• perturbation localised in x and y, t  0.5

u(x, y, 0) = uPer + 0.1 exp(�x2 � y2)
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F I G U R E 6 Solution to the 2D NLS equation for the initial data 𝑢(𝑥, 𝑦, 0) = 𝑢𝑃𝑒𝑟(𝑥, 𝑡0) − 0.1 exp(−(𝑥 − 1)2 − 𝑦2)
for 𝑡 = 0 on the left and 𝑡 = 0.5 on the right
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F I G U R E 7 Real part of the solution to the 2D NLS equation for the initial data 𝑢(𝑥, 𝑦, 0) = 𝑢𝑃𝑒𝑟(𝑥, 𝑡0) +
0.1 exp(−𝑥2 − 𝑦2) for 𝑡 = 0.5, on the left for 𝑦 = 0 and on the right for 𝑦 = 1.7671; the Peregrine solution for the same
time is shown as a dotted line
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F I G U R E 8 Solution to the 2D NLS equation for the initial data 𝑢(𝑥, 𝑦, 0) = 𝑢𝑃𝑒𝑟(𝑥, 𝑡0) − 0.1 exp(−𝑥2 − 𝑦2) for
𝑡 = 0.49 on the left and the 𝐿∞ norm of the solution in dependence of time on the right

The situation changes somewhat in the case 𝑥0 = 0 and 𝑐 = −0.1. In this case, the solution appears
to blow up for 𝑡 ∼ 0.49 (the relative 𝐸[𝑢] conservation drops in this case below 10−3 and the code is
stopped). The solution for 𝑡 = 0.49 can be seen on the left of Figure 8. The 𝐿∞ norm of the solution



Generalized KdV equations 
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•
ut(x, t) + uxxx(x, t) + u(x, t)p�1ux(x, t) = 0, p = 2, 3, ...

• inverse scattering if Faddeev decay condition holds,
Z

R
(1 + |x|)|u0(x)|dx < 1,

• exotic blow-up

• compactification

x = c tan
⇡l

2
, l 2 [�1, 1], c = const

• boundary conditions

u(l, t)

����
l=1

= 0, u(l, t)

����
l=�1

= 0, ul(l, t)

����
l=�1

= 0.

u = v + V, V = A
1 + l

2
+B

(1 + l)2

4
+ C

1� l

2

<latexit sha1_base64="GXjaFghOj7aFx9MKUyqboBNRo6M="></latexit>



12 CHRISTIAN KLEIN AND NIKOLA STOILOV

Figure 9. Solution to the KdV equation (1) with p = 2 for the
initial data (22) for a = 1/2 in dependence of time.
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Figure 10. Solution to the KdV equation (1) with p = 2 for the
initial data (22) for t = 10, on the left for a = 1/2, on the right for
a = 1; in green fitted solitons (4).

If the same initial data as in Fig. 10 are considered for the generalised KdV
equation (5) with p = 4, one obtains for t = 10 the solutions shown in Fig. 12.
The solitons are here much more peaked than in the KdV case of Fig. 10 which
is also illustrated by the fit to the solitons. Consequently the same numerical
parameters as there lead for the generalised KdV solution to a lower resolution:
the relative conservation of the energy is of the order of 10�4, and Chebyshev
coe�cients decrease still exponentially, but only to the order of 10�6 in this case.

5. Outlook

In this paper we have presented a numerical approach for generalised KdV equa-
tions on the compactified real line which allows to approximate functions which are
smooth on R [ {1} with spectral accuracy, i.e., with a numerical error decreasing

10 CHRISTIAN KLEIN AND NIKOLA STOILOV

correct solution by considering a finite step smoothed out at both sides,

(21) u(x, 0) =

8
><

>:

1 x0 < x < 0

exp(�x
2n) x � 0

exp(�(x� x0)2n) x  x0

which can be conveniently treated with Fourier methods as in [21] to which the
reader is referred for details and references. We use N = 212 Fourier modes for x 2

10[�⇡,⇡] and Nt = 1000 time steps for a fourth order exponential time di↵erencing
method. In Fig. 6 we show on the left the solution of Fig. 4 for t = 0.01, and for
the initial data (21) with n = 4 and x0 = �5⇡ at the same time.
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Figure 6. Solution to the KdV equation (1) with p = 2 for the
initial data (20) on the left, and for the initial data (21) on the
right, both for n = 4 and t = 0.01.

The solution to the generalised KdV equation with p = 4 for the same initial
data as in Fig. 3 can be seen in Fig. 7. We have used the same numerical parameters
as for the case p = 2, and we obtain the same numerical resolution. The form of
the DSW is very similar to one for the standard KdV equation.

4.2. Slowly decaying initial data. In this subsection we consider initial data not
satisfying the Faddeev condition, and we are interested in the long time behavior of
the corresponding KdV solutions which is done by introducing a small parameter
✏ in (5). Concretely, we study initial data of the form

(22) u(x, 0) =
1

(1 + x2)a
, a =

1

2
, 1.

We use c = 2, N = 800, and Nt = 104 time steps for t 2 [0, 10]. In Fig. 8 we
show the KdV solution (p = 2) in (5) for the initial data (22) for ✏ = 10�1 and
a = 1 in dependence of time. It can be seen that several solitons appear.

The corresponding KdV solution for the initial data (22) with a = 1/2 and
✏ = 10�1 can be seen in Fig. 9. Note that in contrast to the case a = 1, the
initial data do not satisfy the clamped boundary conditions for x ! �1, one has
A = �B = ⇡/2 and C = 0 in (11).

The solutions at the final time of Fig. 8 and 9 can be seen in Fig. 10, on the left
for a = 1/2, on the right for a = 1. The slower decay towards infinity of the initial
data with a = 1/2 can be recognized. But at the time t = 10, one observes the



Maxwell equations
• wave equation for each component of the electric field, vector Helmholtz

equation after Fourier transform in time

r⇥r⇥E� !2✏(r,!)E = 0

✏(r,!) piecewise constant function

• axial symmetry, spherical coordinates, E = (E⇢
(⇢, ✓), E✓

(⇢, ✓), E�
(⇢, ✓))

⇢E✓
⇢✓ � E⇢

✓✓ + cot(✓)E✓ � ✏(!, ⇢)⇢2!2E⇢ � cot(✓)E⇢
✓ + E✓

✓ + ⇢ cot(✓)E✓
⇢ = 0,

⇢E✓
⇢⇢ � E⇢

⇢✓ + ✏(!, ⇢)⇢!2E✓
+ 2E✓

⇢ = 0,

⇢2E�
⇢⇢ + E�

✓✓ + E�
�
� csc(✓)2 + ⇢2!2✏(!, ⇢)

�
+ cot(✓)E�

✓ + 2⇢E�
⇢ = 0,

E�
decouples, can be put equal to zero in the axisymmetric case
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Sommerfeld condition

• no incoming radiation from infinity

lim
⇢!1

⇢

✓
@

@⇢
+ ik

◆
E(⇢, ✓) = 0

thus
E = Ẽe�ik⇢, Ẽ = 0(1/⇢)

• assumption Ẽ is a smooth function in s = 1/⇢
in the vicinity of infinity
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Multi-domain approach

I II III

I ⇢ = rI(1 + l)/2

II ⇢ = rI(1� l)/2 + rII(1 + l)/2

III ⇢ = 2rII/(1 + l)l 2 [�1, 1]
33



Example

15

This implies with (
YtildeYtilde
30)

f = e�1i!r

✓
2r(1� 2i!r)

1 + r2 + x2
+

2r3(2i!r � 5)

(1 + r2 + x2)2
+

8r5

(1 + r2 + x2)3

�
2r(1� x2)

(1 + r2 + x2)2
+

8rx2(1� x2)

(1r2 + x2)3

◆
;

fexfex (43)

The source f does not tend to zero at infinity, but this is not necessarily
unphysical since we have f = r2 sin ✓(rf ✓

r + f r
✓ ). Thus the source, for

instance a free charge density, is multiplied by a factor r2.
We use the three domains r  8, 8 < r < 20 and r > 20. The real

part of the solution is shown in these three domains for ! = 1 in the
upper row of Fig.

figsolspherfigsolspher
2. For the computation we use NI = 60, NII = 30,

NIII = 30 and Nx = 50 Chebyshev polynomials. The Chebyshev
coe�cients in the respective domains can be seen in the lower row of
Fig.

figsolspherfigsolspher
2. It can be seen that they decrease with this choice of the number

of collocation points to the order of machine precision. Note that the
dependence of the solution (

ex1ex1
42) on the variable x is less pronounced

the larger r is. Thus one would be able to deal with less collocation
points in domains II and III also in x, but in order to simplify the code,
we use the same number of collocation points in x in all domains.

Figure 2. Real part of the solution (
ex1ex1
42) for ! = 1 in

the domains I, II, III (from left to right) in the upper
row, and the corresponding Chebyshev coe�cients in the
lower row. figsolspher

If we solve equation (
YtildeYtilde
30) for the right hand side (

fexfex
43) with the same

number of collocation points as in Fig.
figsolspherfigsolspher
2, one gets the di↵erence be-

tween exact and numerical solution shown in Fig.
figsolsphererrfigsolsphererr
3. It can be seen

that it is globally of the order of 10�13, and thus as expected of the
order as indicated by the highest Chebyshev coe�cients in the lower
row of Fig.

figsolspherfigsolspher
2.
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Figure 3. Di↵erence of the numerical solution of equa-
tion (

YtildeYtilde
30) for the right hand side (

fexfex
43) and the exact solu-

tion (
ex1ex1
42) in the domains I, II, III (from left to right). figsolsphererr

The dependence of the numerical error on the resolution in x and r
can be seen in Fig.

figsolsphererrNfigsolsphererrN
4. For the same values of collocation points in r

as in Fig.
figsolspherfigsolspher
2, the dependence of the di↵erence between numerical and

exact solution in the L1 norm in dependence on Nx can be seen on
the left of Fig.

figsolsphererrNfigsolsphererrN
4. As expected it decreases exponentially and saturates

essentially for Nx � 30.
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Figure 4. L1 norm of the di↵erence of the numerical
solution of equation (

YtildeYtilde
30) for the right hand side (

fexfex
43) and

the exact solution (
ex1ex1
42) in dependence of Nx on the left,

and in dependence of NII on the right. figsolsphererrN

Note that though we use three domains in r, the solution in these
domains are global for r 2 R+. This is due to the fact that equation
(
YtildeYtilde
30) is elliptic, and that we impose on each domain boundary a C1 con-
dition on the solution. This leads to an analytical solution for r 2 R+.
Consequently a lack of resolution in one domain a↵ects the numerical
error in all domains. Thus to study the dependence of the numerical
error on the resolution in r, it is su�cient to compute the global error
in dependence of the resolution in just one domain. This error is shown
for Nx = 50, NI = 60 and NIII = 30 in dependence of NII on the right
of Fig.

figsolsphererrNfigsolsphererrN
4. The error decreases as expected exponentially with NII and

saturates for NII ⇠ 25.
Higher values of ! lead to a more oscillatory behavior of the solution,

see Fig.
figsolspherom10figsolspherom10
5 for ! = 10. This will make a higher resolution necessary.
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•
ut + u

m�1
ux �Huxx = 0,

• Hilbert transform

H[f ](x) :=
1

⇡
P

Z

R

f(y)

x� y
dy

• solitary wave solutions

�cQc(⇠)�HQ
0
c(⇠) +

1

m
Q

m
c (⇠) = 0
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Figure 14. The solitary waves of (2) for m = 2, 3, 4 (from top to bottom).
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Figure 15. The Chebyshev coe�cients of the solitary waves for
m = 3 on the left and for m = 4 on the right, in blue for the finite
domain, in red for the infinite domain.

6. Outlook

In this paper we have presented a multi-domain spectral approach for the Hilbert
transform on the real line. We have shown that it provides a comparable perfor-
mance to Weideman’s global approach [27] for functions analytic on the whole real
line. At various examples we have discussed that the global approach [27] based
on an expansion in terms of rational functions is more e�cient for functions with
an algebraic decrease towards infinity, but that this can be slightly di↵erent for
rapidly decreasing functions. In all cases the same order of magnitude of collo-
cation points is needed to achieve the same accuracy. The FFT based approach
[27] has a lower complexity and is thus the method of choice in such cases. The
multi-domain approach is intended for piecewise analytic functions where it pro-
vides spectral accuracy when a global approach is of finite order and may exhibit
Gibbs phenomena. This was illustrated at various examples.

One application of the multi-domain approach will be to study zones of rapid
modulated oscillations called dispersive shock waves (see for instance [8] for a review
with many references) which appear in the solutions of nonlinear dispersive PDEs
as the Benjamin-Ono equation (2). A multi-domain approach allows a special



Fourier transforms

✦ diagonal differentiation matrices, efficient for 
time integration

✦ not well approximated by DFT for slowly 
decreasing and discontinuous functions

✦ integration in the complex plane on contours 
motivated by steepest decent



Step initial data for Airy 
equation

8 CHRISTIAN KLEIN⇤, JUAN PRADA-MALAGON, AND NIKOLA STOILOV

-1.5 -1 -0.5 0 0.5 1 1.5

x

0

0.2

0.4

0.6

0.8

1

1.2

1.4

|u
-u

G
re

e
n
|

10-12

0 0.5 1 1.5 2

n 10
4

-20

-15

-10

-5

0

Figure 4. Di↵erence between the form (15) and (10) of the solu-
tion to the Schrödinger equation (1) and step initial data (7) for
t = 10�4 on the left, and the Chebyshev coe�cients for the latter
on the right.

Here Ai(x) is the Airy function,

Ai(x) =
1

2⇡

Z

R
ei(kx+k3/3)dk.

The Airy function has the following asymptotic behavior for |x| ! 1:

Ai(x) ⇠ 1

2
p
⇡x1/4

e�2x3/2/3, x ! +1,

Ai(x) ⇠ 1p
⇡x1/4

cos

✓
2x3/2

3
� ⇡

4

◆
, x ! �1.

It is also a solution to the Airy equation

y(x)00 � xy(x) = 0.

4.1. Finite step. For the finite step as initial data, the solution to the Airy equa-
tion for small times leads to rapid oscillations near each discontinuity of the initial
data as can be seen on the left of Fig. 5. For larger times the wavelength of the
oscillations increases, and the initial step will be radiated towards infinity. All
oscillations propagate to the left.
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Figure 5. Solution for the Airy equation (2) and step initial data
(7): on the left for t = 10�6, on the right for several values of
t 2 [10�5, 10�3].
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Figure 6. On the left the integration contours in the complex
k-plane for ⌘ = 1 (top), ⌘ = 0 (middle) and an open contour for
⌘ = �1 (in red the contour bridging between the blue arcs for
⌘ = 1 to address the pole at the origin), on the right the function
F (⌘).

• In the case ⌘ > 1.2, we apply the trapezoidal rule on the uppermost contour
on the left of Fig. 6. A cut-o↵ is introduced, |k1| < K+. The constant K+

can be computed for each value of ⌘ such that the integrand vanishes at the
boundary of the interval to numerical precision. However, a value K+ = 3
is su�cient for all values we consider, and the integral can be computed
with 29 points to the order of machine precision as indicated by the FFT
of the integrand (see the case ⌘ = 2 on the left of Fig. 7).

• In the case �1.2  ⌘  1.2 we use two arcs from the uppermost contour
and a ‘bridge’ between them. We note that this is not the optimal choice
for ⌘  0 as descried above, however when |k1| > k0 the three contours
are su�ciently close to each other, and this sub-optimal choice does not
have a detrimental e↵ect on the calculation. On the two arcs |k1| > k0,
we use a cut-o↵ |k1| < K+, with K+ = 3 being su�cient. We now have
three intervals on which we use the Clenshaw-Curtis algorithm with 211

Chebyshev collocation points (this could be reduced two roughly 80 points
as indicated by the Chebyshev coe↵cients for ⌘ = �1 in the middle of Fig. 7,
we just keep for simplicity the same value as for the computation of the
reference solution).

• For the two integration contours for negative values of ⌘, and with ⌘ < �1.2,
we use k1 2 [10�3, 12] and k1 2 [�12,�10�3] as truncated intervals and 211

points for the trapezoidal rule on each of the contours. The FFT for the
integrand on one of the contours can be seen on the right of Fig. 7.

With the above choice of the parameters, the di↵erence between the solution
(17) and the reference solution (16) can be seen in Fig. 8 to be of the order of 10�13

(Matlab does not give the error of the computed Airy function, thus it is assumed
to be computed to machine precision).

4.2. Lorentz initial data. The solution for the Airy equation for Lorentz initial
data can be written in the form

u(x, t) =

Z 1

0
cos(tk3 + kx)e�kdk,

which can be computed for small values of t and x. The solution can be seen on the
right of Fig. 8. The initial bump will be radiated to infinity in terms of oscillations
towards �1.

9

If the solution is computed via an inverse Fourier transform, this implies

(17) u(x, t) =
1

⇡

Z

R
dk exp(ik3t+ ikx)

sin k

k
=

1

2i⇡

✓
F

✓
x+ 1

t1/3

◆
� F

✓
x� 1

t1/3

◆◆
,

where

(18) F (⌘) =

Z

R

dk

k
exp(ik3 + ik⌘).

To compute this integral, we consider a contour � in the complex k plane where the
exponent � := ik3 + ik⌘ has a constant imaginary part and a negative real part.
Writing k = k1 + ik2, k1, k2 2 R, we get for the real and imaginary part of the
exponent

<� = k2(�3k21 + k22 � ⌘), =� = k1(k
2
1 � 3k22 + ⌘).

In choosing the contour, we follow the approach of [4] where, however, the ex-
ponent is real. Thus everything here is rotated by 90 degrees with respect to
[4]. The idea is to consider a contour through the critical points of the exponent,
k = ±

p
�⌘/3 =: ±↵. We consider the following cases:

• ⌘ > 0: the critical values of k are purely imaginary and the imaginary part
of � can be chosen to vanish on the whole contour. We put k1 2 R and
have

k2 =
q

(k21 + ⌘)/3, <� = �(2k2/3)(4k
2
1 + ⌘)  0

for k2 � 0.
• ⌘ = 0: the contour degenerates to k1 = ±

p
3k2.

• ⌘ < 0: the critical points are real, and the imaginary part does not vanish,
=�(±↵) = ⌥2↵3. For k1 > 0, we have

k2 = (k1 � ↵)

r
k1 + 2↵

3k1

and for negative k1

k2 = �(k1 + ↵)

r
k1 � 2↵

3k1
.

Thus one gets the integration contour on the left of Fig. 6, the same as in [4], just
rotated by 90 degrees. Since the open contours for ⌘ < 0 which meet in the limit
k1 ! 0 for k2 ! �1, there is a contribution of the pole at the origin. In order
to get a continous function, a factor 2⇡i has to be subtracted from the integrals
obtained for negative ⌘.

In practice the presence of the pole at the origin does not allow high numerical
accuracy for |⌘| . 1 with these integration contours. Therefore we change in this
case the integration routine in the following way: we put k0 =

p
3� ⌘, and for

k1 2 [�1,�k0] and k1 2 [k0,1] we choose k2 =
p
(k21 + ⌘)/3 as before. But for

k1 2 [�k0, k0] we put k2 = 1 thus avoiding the pole. We integrate on the three
domains k1 < �k0. �k0 < k1 < k0 and k1 > k + 0. We apply this procedure
for |⌘| < 1.2 as a compromise between avoiding the pole at the origin and the
use of a non-optimised integration contour of a rapidly oscillatory integrand. The
resulting function F is shown on the right of Fig. 6. It shows qualitatively the same
behavior as the Airy function, exponentially vanishing for ⌘ ! +1 and oscillatory
for negative ⌘.

Then we have the following set of algorithms:



Outlook

✦ adapted time integrators
✦ matching conditions for higher order PDEs
✦ fractional derivatives
✦ Fourier transforms
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