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Nonlinear dispersive PDEs

nonlinearity against dispersion, stable
structures (solttons)

rapid oscillations (diwpersive shocks)

blow-up (loss of regularity in finite time), limit

of applicability of the model

most complete results for integrable equations,
results generic?



Hopft equation
e hyperbolic conservation law for u(z,t),
initial data ug(x)

us + 6uu, = 0, u(x,0) = up(x)

e solution with the method of characteristics

u(x,t) = ug(€), r = 6tug(§) + &
1

mingeg [—6ug(§))
ocradient catastrophe,

t > t.: solution multivalued (shock)

e critical time ¢, = ,
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Dissipative regularization
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Korteweg-de Vries equation
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Zoom 1n: dispersive shock




Ditfterent values of €

e=107"° e=1072
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Blow-up

e generalized KAV equation

up + vPuy + €Uy, =0, pEN

(linear) and
Uy + vuPu, =0

(shocks) do not have blow-up of the L., norm of u

e for p < 4: global existence in time,
for p = 4: finite time blow-up (Martel, Merle, Raphagl: rescaled soliton),

for p > 4: finite time blow-up, no theory yet.



oKdV, small dispersion

up = sech’z, e=0.1 o= /!




oKdV, small dispersion

ug = sech’z, e =0.01 !
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Spectral methods

first success of spectral methods: Orszag 1971,
Orr-Sommerfeld instability

periodic problems: discrete Fourier series via

fast Fourter transform (fft)

exponential decrease of the Fourier
coethicients for analytic functions: exponential
decrease of the numerical error due to
truncation of the series: gpectral convergence

non-periodic problems: polynomial
interpolation



Polynomial interpolation

e Chebychev collocation points (Runge phenomenon)

Jm .
e —— —2 § oA s Al = |
i COS(N>7 J ) 9 9

e Lagrange polynomial p(l) of order N for f:[—1,1] — R,
p(lj) — f(lj), ] — O, e ,N

e approximation of the derivative:
() = p'(ly) = Z,ﬁio D;if(l;), 5 =0,...,N; D: differentiation matriz

e spectral convergence for smooth f(I)

e Clenshaw-Curtis algorithm:

Q

FOd~ [ p0dl = waf ()
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Collocation method

Chebychev polynomials

T, (l) = cos(narccos(l)), mn=0,1,...

collocation method: f(l) =~ Zg:o a, Ty (1), on collocation points:

N

B s e S

n=0
relation to fft (fast cosine transformation, not precompiled in Matlab)
spectral coefficients a,,, decrease exponentially with n for smooth f(I)

recurrence formula for Chebyshev polynomials, division by [ in coeflicient

space
T E = i =2 et =1 2



Multidomain method

spectral method of ‘infinite order’, but cond(D?) = 0(/N*); multi-domains
to keep IV small

interval |z;, x,.] mapped to [—1,1]:

141 1 —1
=T —2|_ ILIZTT, | € [—1,1]

compactified exterior domains (CED): s = 1/x local coordinate,

e 34u55 - 233u8

singular for s = 0 (compactification with spectral methods first used by
Grosch, Orszag 1977, popular in astrophysics)



Schrédinger equations

e one dimensional Schrodinger equation

e linear

10pu + Opeu + V(|u|*, 2)u =0

case: quantum mechanics, quantum semiconductors, in electromag-

netic wave propagation, in seismic migration, lowest order one-way ap-
proximation (paraxial wave equation) to the Helmholtz equation, Fresnel
equation in optics, underwater acoustics

&/ =3

-2|u|?: focusing (+) or defocusing (—) cubic nonlinear Schrodinger

equation (NLS), completely integrable (Zakharov-Shabat)

e NLS: modulation of waves in hydrodynamics, nonlinear optics and plasma
physics, Bose-Einstein condensates

M. Birem and C. Klein, Multidomain spectral method for Schrodinger equations,
Adv. Comp. Math., 42(2), 395-423 DOI 10.1007/s10444-015-9429-9 (2016)



Choice of numerical approach

(piecewise) smooth functions: use spectral methods

rapidly decreasing or periodic functions: Fourier (additional advantage:
diagonal differentiations matrices, well conditioned)

solutions with algebraic decrease, compact support or a finite number of
discontinuities: polynomial interpolation

Galilei invariance: u(t,x) NLS solution, so is
st =ute—-cl; t)eicx/Q_iC%M,

c € R finite speed



Rogue waves

Giant waves on deep water, more than twice the
average wave height

NLS solutions?




Peregrine solution

e cxact solution =
» .
uPer o (]_ ( _|_ l ) ) 62’Lt

1+ 422 + 16¢2

e |u| asymptotically decaying to 1 (both in z and t), maximum three times
the asymptotic value
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,Benjamin-Feir instability”

linearization: u = upe,(1 + )
0 + Vg + 2(InUper ) Uz + 4|Uper|*RD = 0,

numerically problematic for upe, =~ 0

e e O —CerO e eeii—

Oét""ﬁaz:z::oa _675_'_04:173:"_404:0

Fourier transform in x, eigenvalues

A oo(k) = £|k|V4 — k2

modulational instability



NLS, localized perturbation

e (Gaussian perturbation

u(z,0) = uper(x,0) + 0.1 exp(—z°)
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lul?

[Localized perturbation

e conserved quantity

B=3 [ {lual = luP(u? = D} de

relative conservation better than 102

= Chebychev compactified zone
coethcients
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Transverse stability

C. Klein, N. Stoilov, Numerical study of the transverse stability of the Peregrine
solution, Stud Appl Math. 145 (2020) 36-51. https://doi.org/10.1111/sapm.12306

2d NLS
B O U e O i = O i = 2lu*u =0

hypothesis: periodic in y (this includes data rapidly decreasing in y)

Fast Fourier transform (FFT) techniques in y (diagonal differentiation
matrices), x € R as before (2 domains, one compactified)

inexact 4th order splitting technique (linear step integrated with IRK4)
fully explicit,

where £4 =1 — h(0.257 £ 0.25/4/3)A




e perturbation localised in x and vy, t < 0.5

u(x,y,0) = uper + 0.1 exp(—(x 1)2 = y2)

155) . . . 7t

X X

FIGURE 4 Real part of the solution to the 2D NLS equation for the initial data u(x, y,0) = up,.(x, ) +
0.1 exp(—(x + 1)> — y?) for t = 0.5, on the left for y = 0, on the right for y = 1.6199; the Peregrine solution for the
same time 1S shown as a dotted line



e perturbation localised in x and y, t < 0.5

u(z,y,0) = uper + 0.1 exp(—x2 = y2)
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FIGURE 8 Solution to the 2D NLS equation for the initial data u(x, y,0) = up,.(x,#,) — 0.1 exp(—x* — y*) for
t = 0.49 on the left and the L norm of the solution in dependence of time on the right



Generalized KdV equations

C. Klein, N. Stoilov, Spectral approach to Korteweg-de Vries equations on the compactified real line,
App. Num. Math., https:/ /doi.org/10.1016/j.apnum.2022.02.015

T e e Ve ot A B T 7 L T et o (e e e

e inverse scattering if Faddeev decay condition holds,
/(1 e
R

e exotic blow-up
e compactification

[
x:ctan%, l € |-1,1], c¢=const

e boundary conditions

u(l,t) = e T A ==

=1 [=—1 =}



FIGURE 10. Solution to the KdV equation (1) with p = 2 for the
initial data (22) for ¢ = 10, on the left for a = 1/2, on the right for
a = 1; in green fitted solitons (4).



Maxwell equations

wave equation for each component of the electric field, vector Helmholtz
equation after Fourier transform in time

V. XV X E—wielr,w)E =0
e(r,w) piecewise constant function
axial symmetry, spherical coordinates, E = (E”(p,0), E%(p,0), E®(p,0))
pEge — Efy + cot(0)EY — e(w, p)p*w? EP — cot(0)Ef + EY + pcot(@)Eg =-{1F
pEgp — By + €(w, p)pw?E° + 2Eg =
e e E;be + E? (—csc(0)? + p*w?e(w, p)) + Cot((9)Eg5 S=eplE —0

E? decouples, can be put equal to Zero in the axisymmetric case



Sommertfeld condition

C. Klein, N. Stoilov, Multidomain spectral approach with Sommerfeld condition for the Maxwell
equations, J. Comp. Phys., https://doi.org/10.1016/j.jcp.2021.110149

e 1no incoming radiation from infinity

. == =
plgrolop 8, ik | E(p,0) =0

thus

~

E=Ee**, E=0(1/p)

e assumption E is a smooth function in s = 1/p
in the vicinity of infinity

32



Multi-domain approach

L p=ri(1+1)/2
I p=ri(1=0/24r(1+1)/2
[ e [—1,1] EH=p=—=2r e LT
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Benjamin-Ono equations

C. Klein, J. Riton, N. Stoilov, Multi-domain spectral approach for the Hilbert transform on the real
line, SN Partial Differential Equations and Applications (2:36) (2021) https:/ /doi.org/10.1007/542985-
021-00094-8

—1

e Hilbert transform

1)) = 7 [ LW g

T R L —Y

e solitary wave solutions

~Qe(€) ~ HQUE) + —Qr(§) = ¢



Newton 1teration
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Fourier transforms

diagonal differentiation matrices, ethicient for
time 1ntegration

not well approximated by DFT for slowly

decreasing and discontinuous functions

integration in the complex plane on contours
motivated by steepest decent



Step 1nitial data for Airy
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FIGURE 5. Solution for the Airy equation (2) and step initial data

(7): on the left for t = 107°, on the right for several values of
e =l



Integration path

dk
JR= / = exp(zk3 + ikn)
R

_4 I -10

FIGURE 6. On the left the integration contours in the complex
k-plane for n = 1 (top), n = 0 (middle) and an open contour for
n = —1 (in red the contour bridging between the blue arcs for
n = 1 to address the pole at the origin), on the right the function
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Outlook

adapted time integrators
matching conditions for higher order PDEs
fractional derivatives

Fourier transtforms
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